Using connectomics to characterize risk for Alzheimer's Disease
使用连接组学来表征阿尔茨海默病的风险
基本信息
- 批准号:9245134
- 负责人:
- 金额:$ 74.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease riskAmericanAmyloidAmyloid beta-ProteinAreaBehaviorBiological AssayBiological MarkersBrainBrain DiseasesCaregiversCategoriesCause of DeathClassificationClinicalCognitiveDataData SetDeteriorationDiagnosisDiagnosticDiffusionDimensionsDiseaseEarly DiagnosisEarly InterventionEarly treatmentFamilyFinancial compensationFollow-Up StudiesFunctional Magnetic Resonance ImagingFutureGenetic Predisposition to DiseaseImageImpaired cognitionIndividualInformation NetworksLanguageLeadLinkMachine LearningMagnetic Resonance ImagingMeasuresMedicalMemoryMental HealthModelingNerve DegenerationNeurobehavioral ManifestationsPathologyPathway AnalysisPopulations at RiskPositron-Emission TomographyPrevalencePropertyRecording of previous eventsRecruitment ActivityResearchRestRiskSamplingSocial InteractionSouth CarolinaStructureSymptomsTestingTimeUnited StatesUnited States National Center for Health StatisticsWell in selfamnestic mild cognitive impairmentbasecognitive functioncognitive performancecognitive testingcombatcomparative efficacydisorder riskefficacy testingimaging modalityimprovedinformation processinginnovationinsightmild cognitive impairmentmortalitynervous system disordernetwork modelsneuroimagingnovelphysical conditioningresponsesocial
项目摘要
PROJECT DESCRIPTION
The prevalence of Alzheimer’s Disease (AD) is expected to increase significantly in the next 30 years. While
research efforts continue to focus on the causes of AD and to develop effective medical treatments, there is
also a pressing need to characterize risk for AD before the disease is diagnosed. There may be subtle
changes in brain and cognitive function that are detectable before major symptoms emerge. One approach for
characterizing these vulnerabilities is the use of functional and structural neuroimaging to identify risk profiles
for AD. The present study proposes and tests a model of AD pathology using neuroimaging network analysis
and machine learning approaches to provide insight on widespread changes in information processing in the
AD brain. The proposed model hypothesizes that some aspects of network information processing reflect
neurodegeneration and cognitive decline associated with AD pathology (e.g., hub connectivity and global
connectivity) whereas other network properties reflect attempts to compensate for compromised information
processing (e.g., diffusion of information). In addition, this proposal compares the efficacy of models with
respect to discriminating diagnostic categories (e.g., machine learning classification of AD and clinically normal
subjects) versus isolating underlying dimensions of AD cognitive decline (e.g., machine learning prediction of
memory and language scores from network features). Finally, this study will determine whether features of AD
pathology are present in an at-risk sample of subjects; namely, individuals diagnosed with amnestic mild
cognitive impairment (aMCI). This will be examined by transferring the AD network models to aMCI subjects
and testing whether the model can discriminate aMCI from clinically normal matched controls and whether the
model can predict scores on cognitive tests. The analytic approach will using resting state fMRI data as a
primary assay of network integrity, but diffusion imaging and task fMRI data will also be examined in an
exploratory aim. The general approach will recruit individuals with AD, aMCI and clinically normal matched
controls for each diagnostic group. The groups that are compared directly will be matched for amyloid status,
as indicated by florbetapir PET imaging. The novel contributions of this project include (a) testing a network
model of AD pathology that unifies various measures of network functioning, (b) comparing efficacy of
modeling with respect to delineating diagnostic categories versus capturing underlying cognitive dimensions of
AD, and (c) transferring the AD model to an at-risk group to assess disease vulnerability. This latter innovation
can be applied in future studies to any group of subjects that is defined at risk, such as those with genetic
vulnerability or positive family history. The present study also sets the stage for a subsequent longitudinal
follow-up study to validate whether individuals identified at risk using network modeling actually convert to AD.
Ultimately, network modeling of this sort may be used as a relatively less expensive and less invasive
biomarker than PET imaging, which could lead to earlier treatments and interventions.
项目说明
阿尔茨海默病(AD)的患病率预计在未来30年内将显著增加。而当
研究工作继续集中在阿尔茨海默病的病因上,并开发有效的医疗方法,有
此外,迫切需要在疾病被诊断之前确定AD的风险。可能会有一些微妙的
大脑和认知功能的变化,在主要症状出现之前就可以检测到。一种方法是
这些脆弱性的特征是使用功能和结构神经成像来识别风险特征
对于AD。本研究提出并验证了一种使用神经成像网络分析的AD病理模型
和机器学习方法,提供对信息处理的广泛变化的洞察
广告大脑。提出的模型假设网络信息处理的某些方面反映了
与AD病理相关的神经变性和认知功能衰退(例如,中枢连接和全球
连通性),而其他网络属性反映了对泄露信息进行补偿的尝试
处理(例如,信息传播)。此外,该建议还将模型的有效性与
关于区分诊断类别(例如,AD和临床正常的机器学习分类
受试者)与孤立的AD认知衰退的潜在维度(例如,机器学习预测
来自网络特征的记忆和语言分数)。最后,本研究将确定AD的特征是否
病理学存在于有风险的受试者样本中;即被诊断为轻度健忘症的个体
认知障碍(AMCI)。这将通过将AD网络模型转移到aMCI受试者来检查
并检验该模型是否能区分急性MCI和临床正常的配对对照
模型可以预测认知测试的分数。该分析方法将使用静息状态的fMRI数据作为
网络完整性的初步分析,但扩散成像和任务fMRI数据也将在
探索性目标。一般方法将招募患有AD、aMCI和临床正常匹配的个体
每个诊断组的对照。直接比较的组将匹配淀粉样蛋白状态,
如氟倍他平PET成像所示。该项目的新贡献包括:(A)测试网络
统一网络功能的各种措施的AD病理模型,(B)比较
关于描述诊断类别与捕获潜在认知维度的建模
AD;以及(C)将AD模型转移到高危人群,以评估疾病易感性。后一项创新
可以在未来的研究中应用于任何一组被定义为有风险的受试者,例如那些患有遗传病的受试者
易受伤害或有阳性家族史。本研究还为随后的纵向研究奠定了基础
后续研究,以验证使用网络建模确定的风险个体是否真的转换为AD。
最终,这种类型的网络建模可以被用作成本相对较低、侵入性较小的
比PET成像更具生物标志性,这可能导致更早的治疗和干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane E Joseph其他文献
The Rapid Access Memory Program for Addressing Concerns of Incipient Dementia in Academic Primary Care Settings.
用于解决学术初级保健机构中早期痴呆症问题的快速记忆程序。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.6
- 作者:
Travis H Turner;Emmi P Scott;Katherine Barlis;Federico J Rodriguez;Andrea C Sartori;Jane E Joseph - 通讯作者:
Jane E Joseph
Jane E Joseph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane E Joseph', 18)}}的其他基金
Using connectomics to characterize risk for Alzheimer's Disease
使用连接组学来表征阿尔茨海默病的风险
- 批准号:
10189467 - 财政年份:2017
- 资助金额:
$ 74.54万 - 项目类别:
Neural substrates of emotion: Impact of childhood trauma and cocaine dependence
情绪的神经基础:童年创伤和可卡因依赖的影响
- 批准号:
9061662 - 财政年份:2015
- 资助金额:
$ 74.54万 - 项目类别:
Neural substrates of emotion: Impact of childhood trauma and cocaine dependence
情绪的神经基础:童年创伤和可卡因依赖的影响
- 批准号:
9237248 - 财政年份:2015
- 资助金额:
$ 74.54万 - 项目类别:
Functional neuroanatomy of developmental changes in face processing
面部处理发育变化的功能神经解剖学
- 批准号:
8051024 - 财政年份:2010
- 资助金额:
$ 74.54万 - 项目类别:
Exploring the neurobiological response to anti-drug media messages with fMRI
利用功能磁共振成像探索对禁毒媒体信息的神经生物学反应
- 批准号:
8241456 - 财政年份:2009
- 资助金额:
$ 74.54万 - 项目类别:
A Comparative Developmental Connectivity Study of Face Processing
人脸处理的比较发展连通性研究
- 批准号:
7923715 - 财政年份:2009
- 资助金额:
$ 74.54万 - 项目类别:
Functional neuroanatomy of developmental changes in face processing
面部处理发育变化的功能神经解剖学
- 批准号:
7905634 - 财政年份:2009
- 资助金额:
$ 74.54万 - 项目类别:
Exploring the neurobiological response to anti-drug media messages with fMRI
利用功能磁共振成像探索对禁毒媒体信息的神经生物学反应
- 批准号:
7373024 - 财政年份:2009
- 资助金额:
$ 74.54万 - 项目类别:
A Comparative Developmental Connectivity Study of Face Processing
人脸处理的比较发展连通性研究
- 批准号:
7745382 - 财政年份:2009
- 资助金额:
$ 74.54万 - 项目类别:
A Comparative Developmental Connectivity Study of Face Processing
人脸处理的比较发展连通性研究
- 批准号:
8207634 - 财政年份:2009
- 资助金额:
$ 74.54万 - 项目类别:














{{item.name}}会员




