The role of circulating Slit2 in adipose thermogenesis and diabetes

循环 Slit2 在脂肪产热和糖尿病中的作用

基本信息

  • 批准号:
    9349495
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-08 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT The increase in obesity worldwide has led to rising health care costs and the number of chronically ill people suffering from obesity-related disorders such as type 2 diabetes. The overarching goal of this research proposal is to better understand brown fat activation and to develop new therapeutic manipulations targeting brown fat to treat metabolic disease such as type 2 diabetes. This work will test the hypothesis that the secreted protein Slit2 is involved in adipose thermogenesis and if administration of the protein could be a safe and effective treatment for diabetes. We have previously utilized unbiased quantitative proteomics to identify novel secreted proteins involved in browning. Using this method, I have identified new mechanisms by which thermogenesis can be activated in adipose tissue. One of the candidates from this approach identified Slit2 as a secreted factor from thermogenic adipocytes. Slit2 had previously been described for its function in brain, and were not believed to be circulating in blood. In addition, I have found a C-terminal cleavage fragment of Slit2, Slit2-C, which has no known peripheral function and acts through an unknown cell-surface receptor. My preliminary data demonstrate that increasing Slit2-C circulating levels in obese, insulin resistant mice improves whole body glucose homeostasis and energy expenditure. These mice show increased oxygen consumption in the brown fat tissue as well as activation of a thermogenic transcriptional program. At least in part, Slit2-C acts through activation of the canonical PKA pathway. In the mentored phase of the award, Aim 1 will test the hypothesis that Slit2 is required for regulating adipose tissue thermogenesis in vivo by performing metabolic characterization of the adipocyte-specific knockout of Slit2. In aim 2 of the mentored phase, I will test the hypothesis that administration of Slit2-C recombinant protein to diabetic rodents will improve diet-induced insulin resistance. Aim 3 will be conducted in the independent phase and will use multiple approaches to determine the functional receptor and signaling pathways for Slit2-C with further potential for clinical translation. I will use a combination of animal physiology and genetics, biochemical protein purification, and mass spectrometry techniques to address the questions in the proposal. If successful, I anticipate that the findings in this proposal has the potential to contribute with new treatments for type-2 diabetes. My current and long-term career objectives are to identify pathways involved in adipose tissue metabolism and to develop new protein therapeutics that regulates glucose homeostasis and has the possibility to improve diabetes. I have a longstanding interest in studying ligand-receptor interactions, macromolecular uptake and mechanisms of intracellular signaling in tumor development. The findings in this proposal are directly building upon my discovery in my postdoctoral work and would be completed in the defined award period. Therefore, study of secreted factor Slit2-C as a new protein therapy for diabetes is a logical extension of my research. My career trajectory after the mentored phase of the K99 is to become an assistant professor at a leading academic research institute. Dr. Bruce Spiegelman, a well-recognized leader in the field of brown fat and diabetes will mentor my scientific and career development. Dr. Spiegelman has successfully trained numerous postdoctoral fellows now holding faculty positions in academic institutions. The Spiegelman laboratory and Harvard Medical School research community provide an ideal setting for training future independent investigators. My plan for career activities includes a continous progress evaluation with my mentor, training in biochemistry and protein therapies, supervision and leadership training, educational coursework, and mentored job search. These career activities will be imperative in the preparation to establish my own research laboratory. In the independent phase, I plan to leverage my biochemical skills and development of new protein biologics and signaling pathways to scientifically separate myself from my mentor. My long-term scientific goal is to establish myself as an independent researcher to drive the field of metabolism and diabetes forward. My focus will be to study biological pathways of circulating hormones and to further study adrenergic receptor-independent pathways of thermogenesis activation in the context of obesity and diabetes. Together with the outstanding resources at Harvard Medical School, this will maximize my potential to successfully transition to independence. The NIH Pathway to Independence Award will be essential for my transition because it will enable me to gain additional training in mouse models of obesity and protein therapies as well as improving my writing and communication skills required for a successful transition.
摘要

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discovery of Hydrolysis-Resistant Isoindoline N-Acyl Amino Acid Analogues that Stimulate Mitochondrial Respiration.
  • DOI:
    10.1021/acs.jmedchem.8b00029
  • 发表时间:
    2018-04-12
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Lin H;Long JZ;Roche AM;Svensson KJ;Dou FY;Chang MR;Strutzenberg T;Ruiz C;Cameron MD;Novick SJ;Berdan CA;Louie SM;Nomura DK;Spiegelman BM;Griffin PR;Kamenecka TM
  • 通讯作者:
    Kamenecka TM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katrin Jennifer Svensson其他文献

Katrin Jennifer Svensson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katrin Jennifer Svensson', 18)}}的其他基金

Control of glucose homeostasis through the insulin-independent Isthmin pathway
通过不依赖胰岛素​​的 Isthmin 通路控制葡萄糖稳态
  • 批准号:
    10201593
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
Control of glucose homeostasis through the insulin-independent Isthmin pathway
通过不依赖胰岛素​​的 Isthmin 通路控制葡萄糖稳态
  • 批准号:
    10025485
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
Control of glucose homeostasis through the insulin-independent Isthmin pathway
通过不依赖胰岛素​​的 Isthmin 通路控制葡萄糖稳态
  • 批准号:
    10633205
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
Control of glucose homeostasis through the insulin-independent Isthmin pathway
通过不依赖胰岛素​​的 Isthmin 通路控制葡萄糖稳态
  • 批准号:
    10408045
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:

相似海外基金

cGAS-STING Pathway Targeting Replicative Adenoviruses with CD46 Tropism and AFP Promoter Conditional Replication Restriction for the Treatment of Hepatocellular Carcinoma
cGAS-STING 通路靶向具有 CD46 趋向性和 AFP 启动子的复制腺病毒条件性复制限制用于治疗肝细胞癌
  • 批准号:
    10436626
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
  • 批准号:
    10557162
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
Molecular therapy of replication-competent adenoviruses targeting characteristic gene mutations found in mesothelioma
针对间皮瘤中发现的特征基因突变的具有复制能力的腺病毒的分子疗法
  • 批准号:
    21K08199
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
  • 批准号:
    10330464
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
Structural characterization of nucleoprotein cores of human adenoviruses
人腺病毒核蛋白核心的结构表征
  • 批准号:
    9807741
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
  • 批准号:
    41625-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Discovery Grants Program - Individual
The therapeutic strategies with augmented replications of oncolytic adenoviruses for malignant mesothelioma
溶瘤腺病毒增强复制治疗恶性间皮瘤的治疗策略
  • 批准号:
    18K15937
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
  • 批准号:
    41625-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 9万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring the effects of nutrient deprivation on T cells and oncolytic adenoviruses, in order to create immune activators for tumour therapy
探索营养剥夺对 T 细胞和溶瘤腺病毒的影响,以创造用于肿瘤治疗的免疫激活剂
  • 批准号:
    1813152
  • 财政年份:
    2016
  • 资助金额:
    $ 9万
  • 项目类别:
    Studentship
Research on detection of novel adenoviruses by genetic methods
新型腺病毒的基因检测研究
  • 批准号:
    16K09118
  • 财政年份:
    2016
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了