Mechanisms of cognitive deficits in dystroglycanopathies
肌营养不良症认知缺陷的机制
基本信息
- 批准号:9210116
- 负责人:
- 金额:$ 56.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-03 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAnimal ModelAnimalsArchitectureBindingBiochemicalBirthBrainCellsCobblestone LissencephalyCognitiveCognitive deficitsCre-LoxPDataDefectDendritic SpinesDevelopmentDiseaseDisease modelECM receptorElectrophysiology (science)EnzymesExtracellular MatrixFamilyFukuyama syndromeGenesGlycosyltransferase GeneGoalsHippocampus (Brain)HistologicIndividualInvestigational TherapiesKnockout MiceLanguageLeadLearningLearning DisabilitiesLinkMannoseMemory impairmentMental RetardationMethodsMusMutateMutationN-AcetylglucosaminyltransferasesNeurogliaNeurologic DysfunctionsNeuronal DysfunctionNeuronal Migration DisorderNeuronsNeurophysiology - biologic functionOutcomePatientsPolysaccharidesProblem SolvingProsencephalonProteinsRecoveryRecovery of FunctionRoleSerotypingStructural defectStructureSynapsesTechnologyTestingTransferaseTreatment EfficacyVertebral columnViral Vectoradeno-associated viral vectoralpha Dystroglycanbasebrain abnormalitiesbrain dysfunctionbrain malformationcongenital muscular dystrophydensitydesigndystroglycanopathyeffective therapyexperimental studyfunctional improvementfunctional plasticitygene replacement therapygene therapygenetic approachglycosylationglycosyltransferaseimprovedknockout genemental functionmouse modeloverexpressionpostnatalpreventprotein expressionprotein-O-mannosyltransferase 2public health relevancereduce symptomsrestorationskillssugartargeted treatmenttherapeutic gene
项目摘要
DESCRIPTION (provided by applicant): Dystroglycanopathies are a group of congenital muscular dystrophies that involve brain malformations and severe mental retardation. Most of the identified causes are mutations in glycosyltransferases that cause hypoglycosylation of a-dystroglycan, an extracellular matrix receptor. The brain malformations, including type II lissencephaly are characterized as a type of neuronal migration disorder, for which no effective therapy exists. The long-term goal of this project is to develop gene therapeutic strategies to improve brain function. Surprisingly while abnormal brain architecture is believed to be the most critical contributor to the neural dysfunction and disorders, our recent studies provide compelling
evidence that a number of key neural functions depend more critically on ongoing glycosylation in the adult brain. In particular we have found that spatial learning insufficiency is mainly cause by altered dendritic spine plasticity due to defective cell-ECM interactions and that restoration o glycosylation restores spine plasticity and improves brain function despite abnormal histological structures. Therefore, our Hypothesis is that postnatal gene therapy restores spine plasticity and improves brain function despite the malformed brain. This proposal focuses on the mechanisms of spatial learning deficits and its rescue by gene therapy as a first step to improve mental function in dystroglycanopathies. The specific aims are designed to understand the mechanisms of spatial learning deficits and functional recovery by gene therapy. Aim 1: Determine the mechanisms of defective dendritic spine plasticity that contributes to spatial learning deficits in
mouse models of dystroglycanopathies. Aim 2: Determine whether restoration of a-dystroglycan glycosylation by gene therapy rescues spatial learning in dystroglycanopathies despite the presence of brain malformations. This proposal will study the basis of spatial learning deficits and their correction via gene therapy without correcting the migration disorder itself using histological, electrophysiological, biochemical, and state-of-the-art genetic approaches. It will lead to improved understanding of the diseases and is expected to produce experimental therapies. The strategy of gene therapy targeted towards postnatal plasticity defects as opposed to correcting developmental histological defects may be broadly useful for other neuronal migration disorders.
描述(申请人提供):营养不良症是一组先天性肌营养不良症,涉及脑畸形和严重的智力低下。大多数已确定的原因是糖基转移酶的突变,导致细胞外基质受体α-肌营养不良聚糖的低糖基化。脑畸形,包括II型无脑畸形,被认为是一种神经元移行障碍,目前还没有有效的治疗方法。该项目的长期目标是开发基因治疗策略来改善大脑功能。令人惊讶的是,虽然异常的大脑结构被认为是神经功能障碍和紊乱的最关键因素,但我们最近的研究提供了令人信服的
有证据表明,许多关键的神经功能更关键地依赖于成人大脑中正在进行的糖基化。特别是,我们发现空间学习障碍主要是由于细胞-ECM相互作用缺陷导致树突棘可塑性改变所致,糖基化恢复可恢复脊柱可塑性并改善脑功能,尽管组织结构异常。因此,我们的假设是,尽管大脑畸形,但出生后的基因治疗可以恢复脊柱的可塑性,并改善大脑功能。这项建议侧重于空间学习障碍的机制和基因治疗的补救,作为改善血糖营养不良患者心理功能的第一步。具体目的是为了了解基因治疗导致空间学习障碍和功能恢复的机制。目的1:确定树突棘可塑性缺陷导致大鼠空间学习障碍的机制。
糖代谢不良症小鼠模型。目的2:确定尽管存在脑畸形,通过基因治疗恢复α-肌营养不良糖链糖基化是否能挽救糖尿病患者的空间学习能力。这项建议将研究空间学习缺陷的基础及其通过基因治疗的纠正,而不是使用组织学、电生理学、生化和最新的遗传学方法纠正迁移障碍本身。它将导致对疾病的更好理解,并有望产生实验性疗法。针对出生后可塑性缺陷而不是纠正发育组织缺陷的基因治疗策略可能对其他神经元迁移障碍具有广泛的实用价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HUAIYU HU其他文献
HUAIYU HU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HUAIYU HU', 18)}}的其他基金
A germline- and promoter-independent strategy to gain access to all cell types in the brain
一种独立于种系和启动子的策略,可获取大脑中所有细胞类型
- 批准号:
10651435 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Ciliary pcoket matrix in photoreceptor health
睫状囊基质对光感受器健康的影响
- 批准号:
10405056 - 财政年份:2018
- 资助金额:
$ 56.34万 - 项目类别:
Ciliary pcoket matrix in photoreceptor health
睫状囊基质对光感受器健康的影响
- 批准号:
9913548 - 财政年份:2018
- 资助金额:
$ 56.34万 - 项目类别:
Mechanisms of cognitive deficits in dystroglycanopathies
肌营养不良症认知缺陷的机制
- 批准号:
9043921 - 财政年份:2015
- 资助金额:
$ 56.34万 - 项目类别:
Mechanisms of cognitive deficits in dystroglycanopathies
肌营养不良症认知缺陷的机制
- 批准号:
8864786 - 财政年份:2015
- 资助金额:
$ 56.34万 - 项目类别:
Regulation of Cell-extracellular Matrix Interactions at the Brain Surface
脑表面细胞-细胞外基质相互作用的调节
- 批准号:
8304267 - 财政年份:2009
- 资助金额:
$ 56.34万 - 项目类别:
Regulation of Cell-extracellular Matrix Interactions at the Brain Surface
脑表面细胞-细胞外基质相互作用的调节
- 批准号:
8109914 - 财政年份:2009
- 资助金额:
$ 56.34万 - 项目类别:
Regulation of Cell-extracellular Matrix Interactions at the Brain Surface
脑表面细胞-细胞外基质相互作用的调节
- 批准号:
7731000 - 财政年份:2009
- 资助金额:
$ 56.34万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




