Modeling scientific workforce dynamics using social network analysis

使用社交网络分析对科学劳动力动态进行建模

基本信息

  • 批准号:
    8994292
  • 负责人:
  • 金额:
    $ 39.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-15 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The scientific workforce requires teams to solve the most critical intellectual and social problems that confront us today. Scientists and inventors are embedded in self-organizing communities, where they share ideas and act both as critics and fans for each other. Recent research has shown that team collaborations, a growing trend across all disciplines, yield publications with higher intellectual impact than single researchers; and, the careers of young scientists are influenced by relationships with others in the community. Furthermore, we have found differences in the networks of women and minorities that explain some of the disparities that exist in these subgroups. Thus, we propose to develop a systems-based approach to studying scientific workforce dynamics that models the mechanisms of how new collaborations form and how these influence both the effectiveness of teams and the career trajectories of individual scientists. Obtaining the data needed to test these models may seem to be a formidable challenge. However, through prior projects, we have already brought together a unique collection of longitudinal datasets, linked at the individual person level, which will be utilized for this new study: On a national scale, PubMed (publications), NIH ExPORTER (grants), USPTO (patents - US Patent and Trademark Office), NPPES (health care providers - National Plan & Provider Enumeration System), and BoardEx (company directors and executives) provide data about individuals and teams both in academia and in industry. On a local scale, within Harvard University, we have collected detailed career data on 35,000 faculty across multiple disciplines, including sensitive information (e.g., race/ethnicity, time to promotion, grant application review scores, etc.) that are typically much more difficult to obtain. The national and local data are complementary, enabling models at different scales. This project will be undertaken by computer scientists and a behavioral and social scientist at Harvard, who recently completed an NIH-funded project to study workforce inclusion and diversity, and social scientists from the Science of Networks in Communities (SONIC) lab at Northwestern University, who are leaders in the use of Social Network Analysis (SNA) to model the socio-technical motivations of collaboration. Three specific aims are planned: (1) Develop empirically validated theoretical models that predict how teams form within the scientific workforce. We have created a multi-theoretical multilevel (MTML) model describing the possible reasons why individuals choose to collaborate. We will use Exponential Random Graph Modeling (ERGM) to test which of these hypotheses best explain the emergence of networks in the scientific workforce. (2) Determine how the assembly mechanisms of teams within the scientific workforce influence their efficacy, such as producing highly cited publications or receiving funding. (3) Determine the influence of a scientist's collaborators on hi or her career trajectory. In particular, we will look at differences in the social networks of wome and underrepresented minorities that predict advancement and retention.
 描述(由申请者提供):科学工作者需要团队来解决当今我们面临的最关键的智力和社会问题。科学家和发明家 嵌入到自组织的社区中,在那里他们分享想法,并充当彼此的批评者和粉丝。最近的研究表明,团队合作是所有学科的一种日益增长的趋势,比起单一的研究人员,团队合作产生的出版物具有更高的智力影响; 而且,年轻科学家的职业生涯受到与社区中其他人的关系的影响。此外,我们发现妇女和少数群体网络中的差异解释了这些小组中存在的一些差异。因此,我们建议开发一种基于系统的方法来研究科学的劳动力动态,对新的合作如何形成的机制以及这些机制如何影响团队的有效性和个人科学家的职业轨迹进行建模。获得测试这些模型所需的数据似乎是一项艰巨的挑战。然而,通过先前的项目,我们已经汇集了在个人层面上链接的独特的纵向数据集集合,这些数据集将用于本次新研究:在国家尺度上,PubMed(出版物)、NIH Exporter(赠款)、USPTO(专利-美国专利商标局)、NPPES(医疗保健提供者-国家计划和提供者枚举系统)以及BoardEx(公司董事和高管)提供学术界和行业中的个人和团队的数据。在当地范围内,在哈佛大学内部,我们收集了多个学科的35,000名教师的详细职业数据,包括敏感信息(例如,种族/民族、晋升时间、拨款申请审查分数等)。通常情况下更难获得。国家和地方的数据是相辅相成的,使不同规模的模型成为可能。该项目将由哈佛大学的计算机科学家和一名行为和社会科学家以及西北大学社区网络科学(SONIC)实验室的社会科学家承担,前者最近完成了一项由NIH资助的研究劳动力包容性和多样性的项目,后者是使用社会网络分析(SNA)对协作的社会技术动机进行建模的领导者。计划了三个具体目标:(1)开发经验证的理论模型,预测团队如何在科学劳动力中形成。我们创建了一个多理论多层次(MTML)模型,描述了个人选择协作的可能原因。我们将使用指数随机图建模(ERGM)来测试这些假设中的哪一个最好地解释了科学工作者中网络的出现。(2)确定团队在科学工作队伍中的集结机制如何影响他们的效率,如出版被广泛引用的出版物或接受资助。(3)确定科学家的合作者对他或她的职业轨迹的影响。特别是,我们将考察wome和代表不足的少数族裔在社会网络中的差异,这些社会网络预测着晋升和保留。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Griffin M Weber其他文献

Human Milk and Colostrum Exposures Modify Locomotive Responses of Polymorphonuclear Leukocytes ♦ 817
  • DOI:
    10.1203/00006450-199804001-00838
  • 发表时间:
    1998-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    E Stephen Buescher;Griffin M Weber;Penney M Koeppen
  • 通讯作者:
    Penney M Koeppen

Griffin M Weber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Griffin M Weber', 18)}}的其他基金

Biases introduced by filtering electronic health records for patients with "complete data"
通过过滤具有“完整数据”的患者的电子健康记录而引入的偏差
  • 批准号:
    10475168
  • 财政年份:
    2020
  • 资助金额:
    $ 39.78万
  • 项目类别:
Biases introduced by filtering electronic health records for patients with "complete data"
通过过滤具有“完整数据”的患者的电子健康记录而引入的偏差
  • 批准号:
    10254420
  • 财政年份:
    2020
  • 资助金额:
    $ 39.78万
  • 项目类别:
Biases introduced by filtering electronic health records for patients with "complete data"
通过过滤具有“完整数据”的患者的电子健康记录而引入的偏差
  • 批准号:
    10676899
  • 财政年份:
    2020
  • 资助金额:
    $ 39.78万
  • 项目类别:
Biases introduced by filtering electronic health records for patients with "complete data"
通过过滤具有“完整数据”的患者的电子健康记录而引入的偏差
  • 批准号:
    10121437
  • 财政年份:
    2020
  • 资助金额:
    $ 39.78万
  • 项目类别:
Modeling scientific workforce dynamics using social network analysis
使用社交网络分析对科学劳动力动态进行建模
  • 批准号:
    9198989
  • 财政年份:
    2015
  • 资助金额:
    $ 39.78万
  • 项目类别:
Modeling scientific workforce dynamics using social network analysis
使用社交网络分析对科学劳动力动态进行建模
  • 批准号:
    8798219
  • 财政年份:
    2015
  • 资助金额:
    $ 39.78万
  • 项目类别:
Visualizing healthcare system dynamics in biomedical Big Data
在生物医学大数据中可视化医疗保健系统动态
  • 批准号:
    8875287
  • 财政年份:
    2015
  • 资助金额:
    $ 39.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了