Biases introduced by filtering electronic health records for patients with "complete data"
通过过滤具有“完整数据”的患者的电子健康记录而引入的偏差
基本信息
- 批准号:10475168
- 负责人:
- 金额:$ 35.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-04 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdoptionAgeCharacteristicsClinicalClinical TrialsClinical Trials NetworkClinical and Translational Science AwardsCodeComputer softwareCountryDataData SetDatabasesDiagnosisElectronic Health RecordEnrollmentEnsureEquilibriumEventFundingGeographic LocationsGoalsGoldHealthHealth care facilityHealthcareHospitalizationHospitalsIndividualInstitutionInsurance CarriersIsraelLinkMachine LearningMeasuresMedicalMedical HistoryMedical centerModelingNational Center for Advancing Translational SciencesOntologyPatientsPerformanceProbabilityProceduresProviderRaceRecording of previous eventsRecordsResearchResearch PersonnelSample SizeSiteStatistical ModelsSystemTestingTrainingUnited States National Institutes of HealthVisitWeightWorkcare seekingclinical databasecohortcostdemographicsimprovedinsurance planmachine learning modelmachine learning predictionopen sourcepatient health informationpatient populationpersonalized medicinepredictive modelingsex
项目摘要
PROJECT SUMMARY
Nationwide adoption of electronic health records (EHRs) has led to the increasing availability of large clinical
datasets. With statistical modeling and machine learning, these datasets have been be used in a wide range of
applications, including diagnosis, decision support, cost reduction, and personalized medicine. However,
because the same patient could be treated at multiple health care institutions, data from only a single EHR might
not contain the complete medical history for that patient, with critical events potentially missing. A common
approach to addressing this problem is to apply data checks that filter the EHR for patients whose data appear
to be more “complete”. Examples of filters include requiring at least one visit per year or ensuring that age, sex,
and race are all recorded. However, in a previous study using EHR data from seven institutions, we showed that
these filters can greatly reduce the sample size and introduce unexpected biases by selecting sicker patients
who seek care more often and changing the demographics of the resulting cohorts. This project extends this
prior research by implementing an expanded set of data completeness filters and testing their accuracy and
potential biases using a combination of national claims data and EHR data from dozens of hospitals and
healthcare centers across the country. This will enable us to understand how data completeness varies in
different EHRs and quantify the tradeoffs of different approaches to correcting for gaps in patients' records. First,
we will develop and measure the accuracy of data completeness filters using national claims data. This provides
a “gold standard” of longitudinal data where patients' complete medical histories are known during the periods
in which they were enrolled in the insurance plan. After partitioning the data by provider groups to model gaps
in EHR data, we will test how well data completeness filters, individually and in combined machine learning
models, select patients with fewer gaps. We will then test whether the filters introduce biases by selecting sicker
patients (more diagnoses, more visits, etc.) or changing their demographic characteristics (age, sex, and zip
code). Then, we will test the filters on EHR data, first at a single large medical center, and then across a national
network of 57 institutions, representing different geographic regions, patient populations, number of years of
data, and types of health care facilities. We will evaluate the filters by measuring whether they improve the
performance of a machine learning model for predicting hospital admissions. Our ultimate goals are to (a) help
researchers balance the need for complete data with the biases this might introduce to their models and (b) help
them predict how well models trained on one EHR dataset might work on other EHRs with different data
completeness profiles.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Griffin M Weber其他文献
Human Milk and Colostrum Exposures Modify Locomotive Responses of Polymorphonuclear Leukocytes ♦ 817
- DOI:
10.1203/00006450-199804001-00838 - 发表时间:
1998-04-01 - 期刊:
- 影响因子:3.100
- 作者:
E Stephen Buescher;Griffin M Weber;Penney M Koeppen - 通讯作者:
Penney M Koeppen
Griffin M Weber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Griffin M Weber', 18)}}的其他基金
Biases introduced by filtering electronic health records for patients with "complete data"
通过过滤具有“完整数据”的患者的电子健康记录而引入的偏差
- 批准号:
10254420 - 财政年份:2020
- 资助金额:
$ 35.81万 - 项目类别:
Biases introduced by filtering electronic health records for patients with "complete data"
通过过滤具有“完整数据”的患者的电子健康记录而引入的偏差
- 批准号:
10676899 - 财政年份:2020
- 资助金额:
$ 35.81万 - 项目类别:
Biases introduced by filtering electronic health records for patients with "complete data"
通过过滤具有“完整数据”的患者的电子健康记录而引入的偏差
- 批准号:
10121437 - 财政年份:2020
- 资助金额:
$ 35.81万 - 项目类别:
Modeling scientific workforce dynamics using social network analysis
使用社交网络分析对科学劳动力动态进行建模
- 批准号:
8994292 - 财政年份:2015
- 资助金额:
$ 35.81万 - 项目类别:
Modeling scientific workforce dynamics using social network analysis
使用社交网络分析对科学劳动力动态进行建模
- 批准号:
9198989 - 财政年份:2015
- 资助金额:
$ 35.81万 - 项目类别:
Modeling scientific workforce dynamics using social network analysis
使用社交网络分析对科学劳动力动态进行建模
- 批准号:
8798219 - 财政年份:2015
- 资助金额:
$ 35.81万 - 项目类别:
Visualizing healthcare system dynamics in biomedical Big Data
在生物医学大数据中可视化医疗保健系统动态
- 批准号:
8875287 - 财政年份:2015
- 资助金额:
$ 35.81万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 35.81万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 35.81万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 35.81万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 35.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 35.81万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 35.81万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 35.81万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 35.81万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 35.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 35.81万 - 项目类别:
Research Fellowships














{{item.name}}会员




