Multivariate methods for identifying multitask/multimodal brain imaging biomarkers
识别多任务/多模式脑成像生物标志物的多变量方法
基本信息
- 批准号:9185800
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaAttentionBehavioralBiological MarkersBiological Neural NetworksBiologyBipolar DisorderBlood flowBrainBrain DiseasesBrain imagingClassificationClinicalCognitiveComplexComputer softwareDataData SetDatabasesDecision MakingDiagnosisDiffusion Magnetic Resonance ImagingDiseaseElectroencephalographyEvaluationFunctional Magnetic Resonance ImagingFundingGoalsHumanHybridsImageImageryImaging technologyJointsLearningLinkMeasurableMeasuresMental DepressionMental disordersMethodsMiningModalityModelingMood DisordersMoodsMultimodal ImagingNeurobiologyOnline SystemsPathway interactionsPatientsPharmaceutical PreparationsPhaseProcessPsychotic DisordersRecurrenceReportingResearchResearch PersonnelRestRiskSample SizeSamplingSchizophreniaSeriesShippingShipsSoftware ToolsSymptomsTarsTestingTimeTrainingUnipolar DepressionValidationWorkabstractingbaseclinical careclinical phenotypedata reductiondata sharingdeep field surveydesigngray matterimaging biomarkerimaging modalityimprovedmultitaskneuroinformaticsneuropsychiatric disordernext generationnovelnovel strategiesopen sourcepotential biomarkerrepositorysimulationsuccesstoolweb portalwhite matter change
项目摘要
Project Summary/Abstract
The brain is extremely complex as we know, involving a complicated interplay between functional information
interacting with a structural (but not static) substrate. Brain imaging technology provides a way to sample various
aspects of the brain albeit incompletely, providing a rich set of multitask and multimodal information. The field
has advanced significantly in its approach to multimodal data, as there are more studies correlating, e.g. func-
tional and structural measures. However the vast majority of studies still ignore the joint information among two
or more modalities or tasks. Such information is critical to consider as each brain imaging modality reports on a
different aspect of the brain (e.g. gray matter integrity, blood flow changes, white matter integrity). The field is
still striving to understand how to diagnose and treat complex mental illness, such as schizophrenia, bipolar
disorder, depression, and others, and ignoring the joint information among tasks and modalities is to miss a
critical, but available, part of the puzzle. Combining multimodal imaging data is not easy since, among other
reasons, the combination of multiple data sets consisting of thousands of voxels or timepoints yields a very high
dimensional problem, requiring appropriate data reduction strategies. In the previous phase of the project we
developed approaches based on multiset canonical correlation analysis (mCCA) and joint independent compo-
nent analysis (jICA) that can capture high-dimensional, linear, relationships among 2 or more modalities, and
which we showed can identify both modality-unique and modality-common features that are predictive of dis-
ease. In this new phase of the project we will focus on two important areas. First, we will build on our previous
success by extending our models to allow for incorporation of behavioral/cognitive constraints as well as devel-
oping new approaches which leverage recent advances in deep learning enabling us to capture higher order
relationships embedded in multimodal and multitask data. Secondly, we will address the key challenge of inte-
grating possibly thousands of multimodal features by developing a new meta-modality framework which will
enable us to bring together the existing and new features in an intuitive manner. This will also enable us to
capture changes in multimodal information which might not be harmful separately but which together are jointly
sufficient to convey risk of illness or to identify information flow through the meta-modal space for developing
potential targets for treatment. We will apply these approaches to one of the largest multimodal imaging datasets
of psychosis and mood disorders. Our proposed approach will be thoroughly evaluated using this large data set
which includes multiple illnesses that have overlapping symptoms and which can sometimes be misdiagnosed
and treated with the wrong medications for months or years (schizophrenia, bipolar disorder, and unipolar de-
pression). As before, we will provide open source tools and release data throughout the duration of the project
via a web portal and the NITRIC repository, hence enabling other investigators to compare their own methods
with our own as well as to apply them to a large variety of brain disorders.
36
项目摘要/摘要
正如我们所知,大脑非常复杂,涉及功能信息之间的复杂相互作用
与结构(但不是静态)底物相互作用。脑成像技术提供了一种品尝各种的方法
大脑的各个方面尽管不完整,提供了丰富的多任务和多模式信息。领域
由于更多的研究相关,例如功能 -
建立和结构措施。但是,绝大多数研究仍然忽略了两个研究
或更多方式或任务。当每种大脑成像方式报告在
大脑的不同方面(例如,灰质完整性,血流变化,白质完整性)。该领域是
仍在努力了解如何诊断和治疗复杂的精神疾病,例如精神分裂症,双极
混乱,抑郁症和其他人,忽略任务和方式之间的共同信息是错过
关键但可用的是难题的一部分。组合多模式成像数据并不容易,因为
原因,由数千个体素或时间点组成的多个数据集的组合产生了很高的
维度问题,需要适当的数据减少策略。在项目的前阶段,我们
开发的方法基于多种规范相关分析(MCCA)和联合独立组合
可以捕获两种或更多方式之间的高维,线性关系的NENT分析(JICA),
我们展示
舒适。在该项目的这个新阶段,我们将重点关注两个重要领域。首先,我们将建立以前的
通过扩展我们的模型以允许纳入行为/认知约束以及开发的成功来取得成功
开发新的方法,这些方法利用了最新的深度学习进步,使我们能够捕捉更高秩序
嵌入在多模式和多任务数据中的关系。其次,我们将解决Inte的主要挑战
通过开发一个新的元模式框架来使可能数以千计的多模式特征进行光栅
使我们能够以直观的方式将现有和新功能汇总在一起。这也将使我们能够
捕获多模式信息的变化,这些信息可能不是分别有害但共同有害的
足以传达疾病的风险或识别通过元模式空间的信息流以发展
潜在的治疗靶标。我们将把这些方法应用于最大的多模式成像数据集之一
精神病和情绪障碍。我们提出的方法将使用此大数据集进行彻底评估
其中包括多种症状重叠且有时会被误诊的疾病
并用错误的药物治疗数月或数年(精神分裂症,躁郁症和单极性疾病
压力)。和以前一样,我们将在项目的整个过程中提供开源工具和发布数据
通过Web门户和一氮存储库,使其他研究人员能够比较自己的方法
凭借我们的并将其应用于各种各样的脑部疾病。
36
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINCE D CALHOUN其他文献
VINCE D CALHOUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINCE D CALHOUN', 18)}}的其他基金
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuits
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10410073 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuit
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10656608 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析PD
- 批准号:
10252236 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10197867 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10443779 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
9811339 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Flexible multivariate models for linking multi-scale connectome and genome data in Alzheimer's disease and related disorders
用于连接阿尔茨海默病和相关疾病的多尺度连接组和基因组数据的灵活多变量模型
- 批准号:
10157432 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10645089 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
COINSTAC: decentralized, scalable analysis of loosely coupled data
COINSTAC:松散耦合数据的去中心化、可扩展分析
- 批准号:
9268713 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
- 批准号:
10698382 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: