Investigating how cellular mechanisms interface to maintain energy balance

研究细胞机制如何相互作用以维持能量平衡

基本信息

  • 批准号:
    9751087
  • 负责人:
  • 金额:
    $ 44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-11 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary:  Organisms, from bacteria to humans, modulate their food intake and energy expenditure in accordance with their internal nutrient state, allowing for maintenance of healthy energy balance. During evolution conserved homeostatic mechanisms developed to cope with potential nutrient deprivation from a fluctuating food supply. Hence when food was plentiful the excess energy is stored as fat reserves, which can be mobilized during a future scarcity. However, in the 21st century nutritional scarcity is the exception rather than the norm, resulting in an increasing prevalence of obesity in humans. Obesity impacts progression of cancer and neurodegeneration, accelerates aging and impedes a healthy lifestyle. Previously, a number of studies focused on how organisms respond to nutritional scarcity, and have resulted in elucidation of evolutionarily conserved mechanisms that orchestrate a response to food scarcity. Our aim is to understand the opposite nutritional state, by focusing on how organisms respond to chronic ‘over-nutrition’. We expect that these mechanisms will be both short-range, acute, local cell biological changes and also prolonged time-scale, inter- organ systemic physiological responses. Thus far, we identified previously uncharacterized surplus signaling components. Unexpectedly we found molecules that are critical for scarcity responses, are also key regulators of nutritional surplus. Given that storage of surplus evolved as a protective strategy to survive future nutritional scarcity, it is likely that an overlapping set of molecules is employed to allow organisms to sense and respond to these two mutually exclusive states. Premised on our observations, we hypothesize that a suite of ‘bidirectional’ switch proteins couple scarcity and surplus mechanisms, allowing organisms to toggle between the two as needed. We further surmise that chronic nutrient surplus, a state that was rare during the evolution, impairs the capacity of this ‘bidirectional molecular switch’ to efficiently alternate in response to nutritional state, resulting in energy imbalance. Our short-term goal is to a) codify the molecular suite underpinning the bidirectional nutritional switch; b) identify new bidirectional nutrient switches that facilitate inter-organ communication required for energy balance. Then, in the medium-term we will c) systematically dissect how the bidirectional mechanisms degrade and lose plasticity when subject to chronic nutrient surplus. Finally, our long-term goal is to d) develop pharmaceutical interventions that target the bidirectional molecular suite, and test their effect in restoring energy balance in systems that have been nutritionally stressed. The fundamental principles we derive from this work will illuminate how molecular components designed to function in a certain physiological state can be co-opted to achieve an antagonistic response. The principles garnered from our studies will be applicable to understanding how viruses hijack immune cells, or explain how cancerous cells trick cell-death pathways and over-proliferate. Ultimately our goal is to address outstanding issues in energy physiology, by adopting a comprehensive and conceptually novel approach, in a highly tractable model.
项目摘要:  从细菌到人类,生物体根据以下方式调节食物摄入和能量消耗: 它们的内部营养状态,可以维持健康的能量平衡。进化过程中保守 体内平衡机制的发展是为了应对食物供应波动造成的潜在营养匮乏。 因此,当食物充足时,多余的能量就会以脂肪储备的形式储存起来,可以在一段时间内被调动起来。 未来的稀缺性。然而,在 21 世纪,营养短缺只是例外而非常态,导致 人类肥胖症的患病率日益增加。肥胖会影响癌症的进展 神经退行性变,加速衰老并阻碍健康的生活方式。此前,多项研究 重点研究生物体如何应对营养匮乏,并从进化角度阐明了 协调应对粮食短缺的保守机制。我们的目标是了解相反的情况 营养状态,重点关注生物体如何应对长期“营养过剩”。我们期望这些 机制既包括短期的、急性的、局部的细胞生物学变化,也包括长期的、跨时间尺度的变化。 器官全身生理反应。到目前为止,我们发现了以前未表征的剩余信号 成分。出乎意料的是,我们发现对稀缺反应至关重要的分子也是关键的调节因子 的营养过剩。鉴于储存剩余物已发展成为一种保护策略,以在未来的营养中生存 稀缺性,很可能采用一组重叠的分子来让生物体感知和响应 这两个相互排斥的状态。根据我们的观察,我们假设一系列 “双向”开关蛋白将稀缺和过剩机制结合起来,允许生物体在两者之间切换 两者根据需要。我们进一步推测,长期营养过剩这种在进化过程中罕见的状态, 损害这种“双向分子开关”有效交替响应营养的能力 状态,导致能量失衡。我们的短期目标是 a) 编纂支撑该理论的分子套件 双向营养开关; b)确定新的双向营养转换,促进器官间的相互作用 能量平衡所需的通信。然后,从中期来看,我们将 c) 系统地剖析如何 当长期营养过剩时,双向机制会退化并失去可塑性。最后,我们的 长期目标是 d) 开发针对双向分子套件的药物干预措施,以及 测试它们在恢复营养压力系统能量平衡方面的效果。基本的 我们从这项工作中得出的原理将阐明分子组件如何设计以在特定的功能中发挥作用 可以选择生理状态来实现拮抗反应。我们的原则 研究将适用于了解病毒如何劫持免疫细胞,或解释癌细胞如何 欺骗细胞死亡途径并过度增殖。我们的最终目标是解决能源领域的突出问题 通过在高度易于处理的模型中采用全面且概念新颖的方法来研究生理学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akhila Rajan其他文献

Akhila Rajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akhila Rajan', 18)}}的其他基金

Investigating How Cellular Mechanisms Interface To Maintain Energy Balance
研究细胞机制如何相互作用以维持能量平衡
  • 批准号:
    10386531
  • 财政年份:
    2017
  • 资助金额:
    $ 44万
  • 项目类别:
Cellular mechanisms governing nutrient sensing and organismal energy homeostasis
控制营养感应和有机体能量稳态的细胞机制
  • 批准号:
    10673609
  • 财政年份:
    2017
  • 资助金额:
    $ 44万
  • 项目类别:
Investigating how cellular mechanisms interface to maintain energy balance
研究细胞机制如何相互作用以维持能量平衡
  • 批准号:
    10224827
  • 财政年份:
    2017
  • 资助金额:
    $ 44万
  • 项目类别:
Investigating how cellular mechanisms interface to maintain energy balance
研究细胞机制如何相互作用以维持能量平衡
  • 批准号:
    10642109
  • 财政年份:
    2017
  • 资助金额:
    $ 44万
  • 项目类别:
Cellular mechanisms governing nutrient sensing and organismal energy homeostasis
控制营养感应和有机体能量稳态的细胞机制
  • 批准号:
    10406565
  • 财政年份:
    2017
  • 资助金额:
    $ 44万
  • 项目类别:
Systemic regulation of energy homeostasis using a Drosophila Leptin model
使用果蝇瘦素模型对能量稳态的系统调节
  • 批准号:
    9267709
  • 财政年份:
    2016
  • 资助金额:
    $ 44万
  • 项目类别:
Systemic regulation of energy homeostasis using a Drosophila Leptin model
使用果蝇瘦素模型对能量稳态的系统调节
  • 批准号:
    8791179
  • 财政年份:
    2014
  • 资助金额:
    $ 44万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了