Predicting Diabetic Retinopathy from Risk Factor Data and Digital Retinal Images
根据危险因素数据和数字视网膜图像预测糖尿病视网膜病变
基本信息
- 批准号:9751381
- 负责人:
- 金额:$ 51.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2023-11-16
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAgeAlaska NativeAmerican IndiansAsian AmericansBlindnessBlood CirculationBlood VesselsCaringCenters for Disease Control and Prevention (U.S.)ChronicClinicClinicalComplications of Diabetes MellitusComputer softwareCountyDataDetectionDiabetes MellitusDiabetic RetinopathyDiagnosisEyeGlucoseHealth Care ReformHealth InsuranceHealth care facilityHispanicsIncidenceInternationalLos AngelesMachine LearningMethodsMinority GroupsModelingMonitorNot Hispanic or LatinoOnline SystemsOperative Surgical ProceduresOphthalmic examination and evaluationOphthalmologistOptometristPatient riskPatientsPilot ProjectsPopulationPrimary Health CareProcessProtocols documentationPublishingReaderReadingRecordsReportingResearch PersonnelResourcesRetinaRetinalRetinal DiseasesRiskRisk FactorsRuralServicesSoftware ToolsSpecialistSpeedTechniquesTelemedicineTimeUnited StatesUniversitiesWorkagedbasecare systemsdiabeticdiabetic patientdigitaldigital imagingethnic minority populationhigh riskimage processinginner citylaser photocoagulationmedical specialtiesmedically underservedmortalitynoveloutreachpatient screeningpredictive modelingprimary care settingracial minorityrandomized trialretinal imagingsafety netscreeningstandard of carestatisticstooltransmission processtrend
项目摘要
Abstract
Diabetic retinopathy is the leading cause of blindness among US adults between the ages of 20 and 74 years.
Laser photocoagulation surgery has been established as an effective way of treating retinopathy if it is
detected early. Yearly retinal screening examinations are a potent tool in the battle to reduce the incidence of
blindness from diabetic retinopathy because they provide diabetic patients with timely diagnoses and
consequently, the potential for timely treatment. Primary care safety net clinics provide monitoring and other
services for diabetic patients but they are often not equipped to provide specialty care services such as retinal
screenings. Access to specialists who can provide retinal screenings can be increased through the use of
telemedicine, which has shown great promise as a means of screening for diabetic retinopathy in the US and
internationally. A pilot study by Charles Drew University investigators had a total of 2,876 teleretinal screenings
performed for diabetic retinopathy, with 2,732 unique diabetic patients from six South Los Angeles safety net
clinics screened. The present study aims to build on this prior work by: (a) developing novel software that
utilizes information from clinical records to detect latent diabetic retinopathy in diabetic patients who have not
yet received an annual eye examination, and (b) devising methods to speed up the diabetic retinopathy
detection process for diabetic patients who have had digital retinal images taken by partially automating the
process using image processing and machine learning techniques. Specifically, we propose to:
1. Develop predictive models for diabetic retinopathy using risk factors collected from patient clinical records.
2. Develop predictive models for automated diabetic retinopathy assessment using a combination of patient
risk factor data and data from digital retinal images previously evaluated by experts.
3. Evaluate the predictive accuracy of: a) the models developed for specific aim 2, and, b) the assessments of
optometrist readers against standard of care dilated retinal examinations by board certified
ophthalmologists for 300 diabetic patients utilizing a new Los Angeles County reading center.
4. Create web-based software tools based on the predictive models developed in specific aim 1 that can be
used to initiate outreach to high-risk patients in under-resourced settings, boosting detection rates for those
patients who are most at risk for diabetic retinopathy.
5. Establish targeted outreach methods to promote screening for patients that the predictive models from
specific aim 1 identify as potentially having undetected diabetic retinopathy.
摘要
糖尿病视网膜病变是美国20岁至74岁成年人失明的主要原因。
激光光凝手术已被确定为治疗视网膜病变的一种有效方法
很早就发现了。每年一次的视网膜筛查是降低糖尿病发病率的有力工具。
糖尿病视网膜病变致盲,因为它们为糖尿病患者提供及时的诊断和
因此,及时治疗的可能性。初级保健安全网诊所提供监测和其他
为糖尿病患者提供的服务,但他们往往没有装备提供特殊护理服务,如视网膜
放映。通过使用可提供视网膜筛查的专家,可以增加与专家的联系
远程医疗作为一种糖尿病视网膜病变筛查手段在美国和
在国际上。查尔斯·德鲁大学的研究人员进行了一项试点研究,总共进行了2876次远程筛查
为糖尿病视网膜病变进行手术,来自6个南洛杉矶安全网的2,732名独特的糖尿病患者
对诊所进行了筛选。本研究的目的是在这项先前工作的基础上:(A)开发新的软件,
利用临床记录中的信息来检测未患糖尿病患者的潜伏性糖尿病视网膜病变
仍接受年度眼科检查,以及(B)设计加速糖尿病视网膜病变的方法
通过部分自动化获取数字视网膜图像的糖尿病患者的检测过程
过程中使用了图像处理和机器学习技术。具体来说,我们建议:
1.利用从患者临床记录中收集的危险因素,开发糖尿病视网膜病变的预测模型。
2.开发使用患者组合的自动糖尿病视网膜病变评估的预测模型
风险因素数据和以前由专家评估的数字视网膜图像数据。
3.评估以下方面的预测准确性:a)为具体目标开发的模型2,以及b)评估
验光师根据护理标准对验光师进行的扩张性视网膜检查
眼科医生使用一个新的洛杉矶县阅读中心为300名糖尿病患者服务。
4.根据在具体目标1中开发的预测模型创建基于Web的软件工具,该模型可以
用于在资源不足的情况下启动对高危患者的外联,提高这些患者的发现率
糖尿病视网膜病变风险最高的患者。
5.建立有针对性的外展方法,以促进对预测模型来自的患者的筛查
特定目标1确定为潜在的未被发现的糖尿病视网膜病变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren Daskivich其他文献
Lauren Daskivich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lauren Daskivich', 18)}}的其他基金
Predicting Diabetic Retinopathy from Risk Factor Data and Digital Retinal Images
根据危险因素数据和数字视网膜图像预测糖尿病视网膜病变
- 批准号:
10258973 - 财政年份:2020
- 资助金额:
$ 51.23万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 51.23万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 51.23万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 51.23万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 51.23万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 51.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 51.23万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 51.23万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 51.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 51.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 51.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




