Conservation and functional-characterization of tumor methylation sites
肿瘤甲基化位点的保护和功能表征
基本信息
- 批准号:9883761
- 负责人:
- 金额:$ 17.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AreaBayesian AnalysisBioconductorCancer EtiologyCellsCessation of lifeClassificationClonal EvolutionCodeColonColorectal CancerColorectal NeoplasmsComputer softwareDNA MethylationDNA analysisDNA sequencingDataData SetEnhancersEpigenetic ProcessEvolutionExhibitsGenesGoalsGrowthHumanIndividualInternetMalignant NeoplasmsMammalian CellMeasuresMethodsMethylationModelingMutationNatureNormal tissue morphologyPathway interactionsPatientsPatternPhenotypeProcessReplication ErrorSample SizeSamplingSideSiteStatistical MethodsTestingTranslatingTranslationsVariantWorkadenomabead chipcolorectal cancer progressiondesigneffective therapyepigenomehuman datainnovationmathematical modelmethod developmentmethylation patternneoplastic cellpersonalized medicinepressuresoftware developmentsuccesstumortumor growthtumorigenesis
项目摘要
We aim to develop statistical methods and software for analysis of DNA methylation data from human colorectal
cancer samples [CRCs] and matched normal tissue. We hypothesize that because epigenetics determines
mammalian cell phenotypes, it will be possible to reconstruct the phenotype of the tumor and its founder cell by
comparing epigenomes sampled from opposite sides of the same CRC. Therefore, we will rank genes or cell
pathways according to the degree of conservation of methylation status they exhibit, indicating which are likely
to be most important during tumor growth.
We propose three innovations to accomplish these goals. First, we exploit a new Illumina microarray
which can measure methylation at ~850,000 CpG sites, allowing broad coverage of most human genes and
enhancers. We will develop methods to enable us to conduct an analysis of such data. We will demonstrate this
using a test dataset in which we have collected multi-regional sampling data (i.e., data in which we sample from
a number of different parts of the same tumor) for 26 human colorectal tumors, along with paired samples of
normal tissue for 6 of those patients and 9 other colons. Second, we propose a two-pronged attack designed to
assess whether each CpG site should be classified as ‘stable’ or ‘unstable’ with respect to the degree of CpG
variation permitted there. In Aim 1 we propose methods that are purely statistical in nature; In Aim 2 we propose
methods that will be built upon an explicit mathematical model for tumor evolution. We will compare and contrast
their results. An additional advantage of the second approach is that it will also allow us to reconstruct the
epigenome of the founder cell.
Third, we will assess conservation of variation within genes or pathways to assess which are most
important during growth---pathways with smaller methylation differences between tumor sides are likely to be
more important and under selective pressures.
The significance of the proposed studies is that we will develop new methods to extract epigenetic
information from multi-regional tumor sampling. Such data are rare at the moment, but will soon be routinely
collected. For that reason, in our fourth aim we propose to produce and freely distributed software and Shiny
applications.
Our long-term goal is to facilitate more personalized and effective therapies that specifically target
pathways or genes most important to the growth of individual CRCs. The development of methods and software
to characterize variation in methylation patterns from multi-regional tumor sampling, and relate that to
genes/pathways will facilitate this process, and the relative ease of obtaining epigenetic information using
methylation arrays should allow widespread translation to other tumor types.
我们的目标是开发用于分析人类结直肠癌DNA甲基化数据的统计方法和软件
癌症样本[CRC]和匹配的正常组织。我们假设因为表观遗传学决定了
哺乳动物细胞表型,将有可能重建肿瘤及其创始细胞的表型,
比较从相同CRC的相对侧取样的表观基因组。因此,我们将对基因或细胞
根据它们所表现出的甲基化状态的保守程度,
在肿瘤生长过程中是最重要的。
我们提出了三个创新来实现这些目标。首先,我们开发了一种新的Illumina微阵列
它可以测量约850,000个CpG位点的甲基化,可以广泛覆盖大多数人类基因,
增强剂。我们将制定方法,使我们能够对这些数据进行分析。我们将证明这一点
使用其中我们已经收集了多区域采样数据的测试数据集(即,我们从这些数据中
同一肿瘤的多个不同部分),沿着的配对样本,
其中6名患者和其他9名结肠的正常组织。其次,我们提出了一个双管齐下的攻击,
评估每个CpG位点是否应该根据CpG的程度被分类为“稳定”或“不稳定”,
允许有变化。在目标1中,我们提出了纯统计性质的方法;在目标2中,我们提出了
这些方法将建立在肿瘤演变的明确数学模型上。我们将进行比较和对比
他们的结果。第二种方法的另一个优点是,它还允许我们重建
创始细胞的表观基因组。
第三,我们将评估基因或途径内变异的保守性,以评估哪些是最重要的。
在生长过程中很重要-肿瘤侧之间甲基化差异较小的途径可能是
更重要的是,在选择性的压力下。
这项研究的意义在于,我们将开发新的方法来提取表观遗传
来自多区域肿瘤取样的信息。这样的数据目前还很少见,但很快就会成为惯例。
收集。因此,在我们的第四个目标中,我们建议生产和自由分发软件和Shiny。
应用.
我们的长期目标是促进更个性化和更有效的治疗,
对个体CRC生长最重要的途径或基因。方法和软件的开发
表征来自多区域肿瘤采样的甲基化模式的变化,并将其与
基因/途径将促进这一过程,并且使用基因/途径获得表观遗传信息相对容易。
甲基化阵列应该允许广泛翻译到其他肿瘤类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Marjoram其他文献
Paul Marjoram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Marjoram', 18)}}的其他基金
Core C: Computation and Software Development Core
核心C:计算和软件开发核心
- 批准号:
10411245 - 财政年份:2016
- 资助金额:
$ 17.94万 - 项目类别:
Core C: Computation and Software Development Core
核心C:计算和软件开发核心
- 批准号:
10707475 - 财政年份:2016
- 资助金额:
$ 17.94万 - 项目类别:
Design and Analysis of 2 Stage GWAS Study Using Next Generation Sequence Technolo
使用下一代测序技术的 2 阶段 GWAS 研究的设计和分析
- 批准号:
8006910 - 财政年份:2010
- 资助金额:
$ 17.94万 - 项目类别:
Statistical Methods for Relating Sequence Data to Phenotype
将序列数据与表型相关的统计方法
- 批准号:
7893074 - 财政年份:2008
- 资助金额:
$ 17.94万 - 项目类别:
Statistical Methods for Relating Sequence Data to Phenotype
将序列数据与表型相关的统计方法
- 批准号:
8064560 - 财政年份:2008
- 资助金额:
$ 17.94万 - 项目类别:
Statistical Methods for Relating Sequence Data to Phenotype
将序列数据与表型相关的统计方法
- 批准号:
7691830 - 财政年份:2008
- 资助金额:
$ 17.94万 - 项目类别:
相似海外基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Bayesian analysis of generative models of sequence insertion events in HIV-1 envelope glycoproteins
HIV-1 包膜糖蛋白序列插入事件生成模型的贝叶斯分析
- 批准号:
574483-2022 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210280 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
- 批准号:
2206934 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210281 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
- 批准号:
2113375 - 财政年份:2021
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 17.94万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 17.94万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 17.94万 - 项目类别: