SCH: INT: Virtual Neuroprosthesis: Restoring Autonomy to People Suffering From Neurotrauma

SCH:INT:虚拟神经假体:恢复神经创伤患者的自主权

基本信息

  • 批准号:
    9753215
  • 负责人:
  • 金额:
    $ 31.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

By reconnecting the previously severed sense of touch, the field of neuroprosthetics has tremendous potential to substantially improve the lives of millions of amputees and disabled people worldwide. However, the rate of progress to develop neuroprosthetic limbs has been comparatively slow relative to other areas of robotics for two primary reasons: research involving neural implants with human subjects is very expensive and a lengthy process is required to obtain FDA approval to implant electrodes in human subjects. Thus, the overall goal of this project is to develop a virtual neuroprosthesis in which a facsimile of a neural implant is externalized and housed in a well-controlled microfluidic chamber, thereby abating the intrinsic limitations of highly invasive studies with neural implants. Upper limb amputee subjects will be recruited to control a dexterous artificial hand and arm with electromyogram signals while electroencephalogram (EEG) signals are simultaneously measured. Robotic grip force measurements will be biomimetically converted into electrical pulses similar to those found in the peripheral nervous system to catalyze in. vitro nerve regeneration after neurotrauma. The synergistic contributions of this multidisciplinary project will lead to a transformative understanding of the symbiotic interaction of neural plasticity within human-robotic systems. Currently, there is no systematic understanding of how tactile feedback signals can contribute to the neural regeneration of afferent neural pathways to restore somatosensation and improve motor function in amputees fitted with neuroprosthetic limbs. Tackling this problem will be a significant breakthrough for the important field of neuroprosthetics. The proposed virtual neuroprosthesis will be much less expensive and vastly simpler to obtain IRB approval to conduct research with human subjects. Through this, the research team can conduct meaningful neuroprosthetic experiments with human subjects at a fraction of the cost while accumulating significant data much quicker.
通过重新连接以前被切断的触觉,神经修复术领域具有巨大的潜力,可以大大改善全球数百万截肢者和残疾人的生活。然而,相对于机器人的其他领域,神经假肢的开发进展速度相对缓慢,主要原因有两个:涉及人类受试者神经植入物的研究非常昂贵,并且需要经过漫长的过程才能获得FDA批准将电极植入人类受试者。因此,该项目的总体目标是开发一种虚拟神经假体,其中神经植入物的传真被外部化并容纳在一个控制良好的微流体室中,从而减轻神经植入物高度侵入性研究的内在限制。将招募上肢截肢受试者,以肌电信号控制灵巧的假手和手臂,同时测量脑电图(EEG)信号。机器人的握力测量将被生物仿生学转换成类似于周围神经系统中发现的电脉冲来催化。神经损伤后的体外神经再生。这个多学科项目的协同贡献将导致人类-机器人系统内神经可塑性的共生相互作用的变革性理解。目前,还没有系统的了解触觉反馈信号如何有助于传入神经通路的神经再生,以恢复躯体感觉和改善装有神经假肢的截肢者的运动功能。解决这个问题将是神经修复学这一重要领域的重大突破。拟议中的虚拟神经假体将更加便宜,并且更容易获得IRB批准,以进行人类受试者的研究。通过这一点,研究团队可以以一小部分成本对人类受试者进行有意义的神经假体实验,同时更快地积累重要数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

E Du其他文献

E Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('E Du', 18)}}的其他基金

Validation of Imaging and Electrical Impedance-Based Microfluidic Assays for Cell Sickling
细胞镰化成像和基于电阻抗的微流控分析的验证
  • 批准号:
    10001658
  • 财政年份:
    2019
  • 资助金额:
    $ 31.77万
  • 项目类别:
SCH: INT: Virtual Neuroprosthesis: Restoring Autonomy to People Suffering From Neurotrauma
SCH:INT:虚拟神经假体:恢复神经创伤患者的自主权
  • 批准号:
    9502593
  • 财政年份:
    2017
  • 资助金额:
    $ 31.77万
  • 项目类别:
SCH: INT: Virtual Neuroprosthesis: Restoring Autonomy to People Suffering From Neurotrauma
SCH:INT:虚拟神经假体:恢复神经创伤患者的自主权
  • 批准号:
    9974296
  • 财政年份:
    2017
  • 资助金额:
    $ 31.77万
  • 项目类别:
Placenta-on-a-Chip Sensing Platform to Study Placental Malaria
用于研究胎盘疟疾的胎盘芯片传感平台
  • 批准号:
    9373330
  • 财政年份:
    2017
  • 资助金额:
    $ 31.77万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 31.77万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 31.77万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 31.77万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 31.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 31.77万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 31.77万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 31.77万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 31.77万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 31.77万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 31.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了