Center for Immunotherapeutic Transport Oncophysics
免疫治疗运输肿瘤物理学中心
基本信息
- 批准号:9752959
- 负责人:
- 金额:$ 163.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-29 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvantAffectAnimal ModelAreaBiodistributionBiologicalBiomimeticsBiophysicsBlood VesselsCancer BiologyCancer Immunology ScienceCellsChemistryClinicalClinical OncologyCodeCouplingCuesDendritic Cell VaccineDevelopmentDiagnosticDisseminated Malignant NeoplasmDrug Delivery SystemsDrug KineticsEducation and OutreachEngineeringEvolutionFoundationsFundingGenetic EngineeringGoalsImageImaging technologyImmuneImmunologyImmunotherapeutic agentImmunotherapyInfiltrationInstitutionKnowledgeLymphaticLymphocyteMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of pancreasMammary NeoplasmsMathematicsMedicalMedical centerMetastatic MelanomaMethodist ChurchModelingMusPathologyPatient SelectionPhenotypePhysicsProcessPropertyProtocols documentationResearchResearch InstituteResearch PersonnelResearch Project GrantsResistanceResource SharingResourcesSiliconTechnologyTexasTherapeuticTherapeutic AgentsTreatment EfficacyTropismUnited States Food and Drug AdministrationUniversitiesUniversity of Texas M D Anderson Cancer CenterVaccinesWorkanticancer activitybasecancer imagingcancer typecomputer frameworkcomputer sciencecomputerized toolsdesignimaging modalityimmunogenicityimprovedin vivo imaginginnovationmalignant breast neoplasmnanonanotherapeuticnovelnovel therapeuticsoncologypancreatic neoplasmpersonalized immunotherapypersonalized medicinepersonalized therapeuticphysical scienceprogramsspatiotemporalsuccesstheoriestherapeutic targettherapy resistanttumortumor growthtumor microenvironmenttumor progression
项目摘要
OVERALL – SUMMARY
The US Food and Drug Administration recently approved several immunotherapies for the treatment of
metastatic melanoma and lung cancer, based on their robust anti-cancer activities. Intense effort to apply
immunotherapies for many other cancers, including breast and pancreatic cancers, have not yet met with
similar success. Much of the effort has been focused on the study of the biological aspects of different
immunotherapeutics, rather than the physical spatio-temporal peculiarities and aberrations of tumors (e.g.,
poor lymphocyte infiltration), which we believe are key parameters for improving the efficacy of
immunotherapies. Recent evidence emphasizes the importance of processes within the tumor
microenvironment over systemic pharmacokinetics for therapeutic efficacy. Thus, the impact of transport
phenomena on immunotherapeutic efficacy (and therapeutic resistance) should be considered when
developing strategies for new immunotherapies. Within this conceptual framework, the proposed Center for
Immunotherapeutic Transport Oncophysics (CITO) focuses on: 1) understanding transport limitations of
immune cells and immunotherapeutics; 2) establishing a precision immunotherapeutics framework on the
basis of transport oncophysics; and 3) exploiting oncophysical transport-based cues for the development of
successful personalized immunotherapeutics strategies based on transport phenotypes. Our overarching
strategy comprise many innovations, including transport as a resistance for immunotherapies,
nanotherapeutic vaccines, biomimetic constructs, precision immunotherapeutics, biodistribution theory, and
oncophysics models for transport, biodistribution and tumor growth. The research projects focus on breast
and pancreatic cancers, as those are cancer types with significant clinical challenges. In particular, we will
determine the transport of Nano-DC vaccines and immune cells, and how they can be modulated to affect
immunogenicity and therapeutic efficacy, with primary focus on breast cancer (Project 1). We will also
determine the biophysical transport barrier(s) within the pancreatic cancer tumor microenvironment that can
be modulated to affect the efficacy of immunotherapies (Project 2). Both projects focus on immune cell
transport across many transport-limiting barriers (e.g., lymphatics, stroma, and vascular leakiness). They
also share a set of animal models, therapeutic, and adjuvant agents, and they are also supported by the
Transport Oncophysics Core (TOC). The CITO's overall objectives for the proposed funding period are:
1) to determine transport properties of immunotherapeutic agents in breast and pancreatic tumors; 2) to
establish a predictive computational transport oncophysics framework for cancer immunotherapeutics; 3)
to determine the extent of therapeutic resistance caused by therapeutic transport limitations and their
evolution during cancer progression; and 4) to optimize and personalize systemic immunotherapeutic
strategies based on the results of the first three objectives.
总体-摘要
美国食品和药物管理局最近批准了几种免疫疗法,用于治疗
转移性黑色素瘤和肺癌,基于其强大的抗癌活性。申请工作非常努力
针对许多其他癌症(包括乳腺癌和胰腺癌)的免疫疗法尚未得到满足
类似的成功。大部分的努力都集中在不同的生物学方面的研究
免疫治疗,而不是肿瘤的物理时空特性和畸变(例如,
淋巴细胞浸润不良),我们认为这是改善
免疫疗法最近的证据强调了肿瘤内过程的重要性
微环境对治疗功效的全身药代动力学的影响。因此,运输的影响
应考虑免疫效力(和治疗耐药性)的现象,
开发新的免疫疗法策略。在这一概念框架内,拟议的中心
免疫转运肿瘤物理学(CITO)的重点是:1)了解运输限制,
免疫细胞和免疫治疗; 2)建立一个精确的免疫治疗框架,
运输物理学的基础;和3)利用基于运输的物理学线索,
基于转运表型的成功的个性化免疫治疗策略。我们的总体
战略包括许多创新,包括作为免疫疗法抗性的转运,
纳米疫苗,仿生结构,精确免疫治疗,生物分布理论,
用于运输、生物分布和肿瘤生长的肿瘤物理学模型。研究项目集中在乳房
和胰腺癌,因为这些癌症类型具有显著的临床挑战。特别是要
确定纳米DC疫苗和免疫细胞的运输,以及它们如何被调节以影响
免疫原性和治疗功效,主要关注乳腺癌(项目1)。我们还将
确定胰腺癌肿瘤微环境内的生物物理转运屏障,
调节以影响免疫疗法的功效(项目2)。这两个项目都专注于免疫细胞
跨越许多运输限制障碍的运输(例如,动脉粥样硬化、基质和血管渗漏)。他们
也共享一套动物模型,治疗和辅助剂,他们也得到了
运输肿瘤物理学核心(TOC)。首席信息技术干事在拟议供资期间的总体目标是:
1)确定免疫抑制剂在乳腺和胰腺肿瘤中的转运特性; 2)
建立用于癌症免疫治疗的预测性计算转运肿瘤物理学框架; 3)
以确定由治疗转运限制引起的治疗抗性的程度及其
癌症进展过程中的演变;以及4)优化和个性化全身免疫
根据前三个目标的结果制定战略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENNY C-N CHANG其他文献
JENNY C-N CHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENNY C-N CHANG', 18)}}的其他基金
Dual targeting of PI3K and NOS pathways in Metaplastic BreastCancer (MBC)
化生性乳腺癌 (MBC) 中 PI3K 和 NOS 通路的双重靶向
- 批准号:
10739097 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
A phase II multi-center trial evaluating dual targeting of the PI3K/AKT and NOS pathways for treating metaplastic breast cancer (MpBC)
一项评估 PI3K/AKT 和 NOS 通路双重靶向治疗化生性乳腺癌 (MpBC) 的 II 期多中心试验
- 批准号:
10642669 - 财政年份:2022
- 资助金额:
$ 163.83万 - 项目类别:
A phase II multi-center trial evaluating dual targeting of the PI3K/AKT and NOS pathways for treating metaplastic breast cancer (MpBC)
一项评估 PI3K/AKT 和 NOS 通路双重靶向治疗化生性乳腺癌 (MpBC) 的 II 期多中心试验
- 批准号:
10393358 - 财政年份:2022
- 资助金额:
$ 163.83万 - 项目类别:
Targeting the Inflammasome As a Treatment Strategy for COVID-19 infected cancer patients
以炎症小体为目标作为治疗 COVID-19 感染癌症患者的策略
- 批准号:
10161460 - 财政年份:2016
- 资助金额:
$ 163.83万 - 项目类别:
Targeting Notch, PI3K-AKT and Other Novel Pathways in Breast Cancer Stem Cells
靶向乳腺癌干细胞中的 Notch、PI3K-AKT 和其他新途径
- 批准号:
8111136 - 财政年份:2008
- 资助金额:
$ 163.83万 - 项目类别:
Targeting Notch, PI3K-AKT and other novel pathways in breast cancer stem cells
靶向乳腺癌干细胞中的 Notch、PI3K-AKT 和其他新通路
- 批准号:
8255996 - 财政年份:2008
- 资助金额:
$ 163.83万 - 项目类别:
Targeting Notch, PI3K-AKT and other novel pathways in breast cancer stem cells
靶向乳腺癌干细胞中的 Notch、PI3K-AKT 和其他新通路
- 批准号:
7691767 - 财政年份:2008
- 资助金额:
$ 163.83万 - 项目类别:
Treatment Resistance Pathways & Targeting Residula Cancers
治疗耐药途径
- 批准号:
7385522 - 财政年份:2007
- 资助金额:
$ 163.83万 - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
Studentship
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
$ 163.83万 - 项目类别:














{{item.name}}会员




