Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
基本信息
- 批准号:9886150
- 负责人:
- 金额:$ 56.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AGTR2 geneAcuteAcute Lung InjuryAffectAlveolarAnimal ModelApoptosisAwardAwarenessBiochemical MarkersBiological AssayBudgetsCell membraneCellsClinicalClinical ResearchCo-ImmunoprecipitationsComplexDataDevelopmentDown-RegulationDrug DesignEndothelial CellsEndotheliumEnvironmentEpithelialEpithelial CellsEpitheliumExposure toFluorometryFunctional disorderGenetic EnhancementHealthcareHistologicHospitalizationHumanHyperoxiaIn VitroIndividualInflammationInflammation MediatorsInflammatory ResponseInterventionKnockout MiceLabelLengthLifeLungLung InflammationMass Spectrum AnalysisMeasuresMediatingMembrane PotentialsMolecular TargetMorbidity - disease rateMorphologyMusOxygenOxygen Therapy CarePathway interactionsPatient-Focused OutcomesPatientsPharmacologyPhysiologicalPotassium ChannelProcessRespiratory FailureRoleSECTM1 geneSavingsSignal PathwaySignal TransductionStructureSupplementationTestingTherapeuticTranslatingalveolar epitheliumbiophysical propertiescell typeexperimental studyimprovedin vivo Modelinnovationlung injurymortalitymouse modelnovelnovel strategiesoverexpressionoxygen toxicitypatch clamppotassium channel protein TREK-1preventprotective effectrespiratory hypoxiatargeted treatmentvoltage
项目摘要
PROJECT SUMMARY:
Significance: Oxygen supplementation (hyperoxia; HO) is the most frequently applied therapy for
hospitalized patients and the cornerstone of treatment for acute hypoxic respiratory failure (ARF). It is well known,
however, that HO exposure can not only promote existing lung injury but also initiate inflammation and barrier
dysfunction in otherwise healthy lungs. The inflammatory response evoked by HO is particularly damaging to
alveolar epithelial and endothelial cells causing cellular apoptosis and alveolar barrier disruption. Clinically, the
recognition of HO-induced acute lung injury (HALI) led to an increased awareness of oxygen toxicity and
efforts to minimize oxygen exposure for ARF patients. Although clinical and experimental studies have identified
several potential mechanisms underlying HALI, currently no therapies exist to prevent or counteract HALI, and
the length of hospitalization of ARF patients has remained unchanged for two decades. These findings
underscore the urgent need for identifying molecular targets to facilitate rational drug design against HALI.
In the search for such new targets, we discovered TREK-1 potassium channels as potential new key
regulators of HALI. Our preliminary data support the novel hypothesis that HO downregulates epithelial and
endothelial TREK-1 channels, which results in cell membrane depolarization, subsequent opening of voltage-
gated Ca2+ channels, and as a consequence increased inflammatory mediator secretion, cell apoptosis and
alveolar barrier dysfunction. Furthermore, we propose that enhancement of TREK-1 activity can counteract this
injurious cascade.
We will test this hypothesis in three Specific Aims: In Aim1 we will identify the cell type(-s) predominantly
affected by HO-induced TREK-1 downregulation, using epithelial and endothelial cell-specific TREK-1 KO mouse
models and primary cells isolated from these mice. In Aim 2 we will determine the protective effects of TREK-1
enhancement against HALI using novel TREK-1 activating compounds, new cell type-specific TREK-1
overexpressing mouse models, and primary epithelial and endothelial cells isolated from these mice. In Aim 3
we will dissect the structural composition and biophysical properties of epithelial and endothelial TREK-1
channels at baseline and under HO conditions, and propose a novel signaling mechanism by which TREK-1
channels could regulate inflammation and barrier dysfunction during HALI.
This study will impact the field of acute lung injury by establishing aberrant epithelial and endothelial TREK-
1 signaling in the lung as a previously unrecognized pathway in HALI, and TREK-1 activation as the first targeted
therapeutic approach against HALI.
项目总结:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Schwingshackl其他文献
Andreas Schwingshackl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Schwingshackl', 18)}}的其他基金
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
- 批准号:
10586093 - 财政年份:2020
- 资助金额:
$ 56.16万 - 项目类别:
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
- 批准号:
10356905 - 财政年份:2020
- 资助金额:
$ 56.16万 - 项目类别:
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
- 批准号:
10112957 - 财政年份:2020
- 资助金额:
$ 56.16万 - 项目类别:
The Role of 2-Pore Domain Potassium Channels in Acute Lung Injury.
2 孔域钾通道在急性肺损伤中的作用。
- 批准号:
8632613 - 财政年份:2014
- 资助金额:
$ 56.16万 - 项目类别:
The Role of 2-Pore Domain Potassium Channels in Acute Lung Injury.
2 孔域钾通道在急性肺损伤中的作用。
- 批准号:
8984909 - 财政年份:2014
- 资助金额:
$ 56.16万 - 项目类别:
The Role of 2-Pore Domain Potassium Channels in Acute Lung Injury.
2 孔域钾通道在急性肺损伤中的作用。
- 批准号:
9272423 - 财政年份:2014
- 资助金额:
$ 56.16万 - 项目类别:
相似海外基金
Combinatorial cytokine-coated macrophages for targeted immunomodulation in acute lung injury
组合细胞因子包被的巨噬细胞用于急性肺损伤的靶向免疫调节
- 批准号:
10648387 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:
Lung epithelial cell-derived C3 in acute lung injury
肺上皮细胞衍生的 C3 在急性肺损伤中的作用
- 批准号:
10720687 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:
Examining the role of TRMT1 and tRNA methylation in acute lung injury and ARDS
检查 TRMT1 和 tRNA 甲基化在急性肺损伤和 ARDS 中的作用
- 批准号:
10719249 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:
Inducible HMGB1 antagonist for viral-induced acute lung injury.
诱导型 HMGB1 拮抗剂,用于治疗病毒引起的急性肺损伤。
- 批准号:
10591804 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:
MAP2K1 AND MAP2K2 IN ACUTE LUNG INJURY AND RESOLUTION
MAP2K1 和 MAP2K2 在急性肺损伤中的作用及缓解
- 批准号:
10741574 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:
Development of a new treatment for COVID-19-related acute lung injury targeting the microbiota-derived peptide corisin
针对微生物群衍生肽 corisin 开发治疗 COVID-19 相关急性肺损伤的新疗法
- 批准号:
23K07651 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing immunovascular mechanobiology in pneumonia-associated acute lung injury at the single capillary level
在单毛细血管水平探讨肺炎相关急性肺损伤的免疫血管力学生物学
- 批准号:
10679944 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:
The amyloid precursor protein protects against acute lung injury
淀粉样前体蛋白可预防急性肺损伤
- 批准号:
10575258 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:
Role of macrophages and miRNA in regulating lung macrophage polarization and lung pathogenesis during respiratory virus-induced acute lung injury in normal and diabetic Syrian hamsters.
正常和糖尿病叙利亚仓鼠呼吸道病毒引起的急性肺损伤期间巨噬细胞和 miRNA 在调节肺巨噬细胞极化和肺部发病机制中的作用。
- 批准号:
10701207 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:
Roles of N-glycans on neutrophil beta2 integrins in progression of acute lung injury
N-聚糖对中性粒细胞β2整合素在急性肺损伤进展中的作用
- 批准号:
10837431 - 财政年份:2023
- 资助金额:
$ 56.16万 - 项目类别:














{{item.name}}会员




