COORDINATE CONTROL OF INDIVIDUAL NEURONAL TRANSCRIPTOMES BY TRANSCRIPTION FACTORS AND RNA BINDING PROTEINS
转录因子和 RNA 结合蛋白对个体神经元转录组的协调控制
基本信息
- 批准号:9885571
- 负责人:
- 金额:$ 31.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlternative SplicingBehaviorCRISPR/Cas technologyCaenorhabditis elegansCatalogingCatalogsCellsDataDefectDepressed moodDevelopmentDissectionGene ExpressionGene Expression RegulationGenesGeneticGenetic TechniquesGoalsHumanIndividualLeadLinkMediatingMissionModelingMolecularMolecular AnalysisNematodaNervous system structureNeuronsOutcomePatternPhenotypePhosphotransferasesPositioning AttributePropertyRNARNA SplicingRNA-Binding ProteinsRegulationRegulator GenesReporterResearchShapesSorting - Cell MovementSpecific qualifier valueTestingTouch sensationTranscriptTranscriptional RegulationUnited States National Institutes of HealthWorkcell typecombinatorialeggexperimental studyin vivoinnovationinsightmutantneuron developmentprogramstooltranscription factortranscriptometranscriptome sequencingtranscriptomics
项目摘要
The development and function of individual neurons are defined by their unique transcriptomic properties, but
despite recent efforts cataloguing single neuron transcriptomes, there remains a gap in our understanding of
the causal mechanisms by which gene regulatory factors specify individual neuronal transcriptomes. In
particular, little is known about how factors regulating various layers of gene expression, e.g. transcription
factors (TFs) and RNA binding proteins (RBPs), coordinately control the transcriptomes of single neurons. This
proposal aims to fill the gap by leveraging unique properties of the nematode Caenorhabditis elegans to
mechanistically investigate coordinated transcriptomic regulation of specific model neurons in vivo. The well-described and invariant lineage of the C. elegans nervous system, combined with powerful genetic techniques,
will enable detailed dissection of TF-RBP control over neuronal development. Additional tools recently
developed and adapted in the lab, including combinatorial CRISPR/Cas9, single-neuron in vivo alternative
splicing reporters, and neuron-specific FACS sorting followed by RNA Seq, will reveal mechanisms and
consequences of coordinated regulation of single neurons in vivo. The objective of this proposal is to define
TF-RBP pairs that genetically interact and combinatorially shape neuron-specific transcriptomes. The
hypothesis is that cell-specific combinations of TFs and RBPs converge on specific target networks to define
neuronal transcriptomes. This hypothesis is supported by preliminary in vivo data in C. elegans showing that
(a) certain TFs and RBPs combinatorially define splicing choices including splicing of the conserved neuronal
kinase sad-1 in individual neurons such as the touch-sensing neurons, and (b) neuronal TFs and RBPs
genetically interact to affect neuronal function and behavior. The hypothesis will be further tested by the
experiments proposed in the following aims: 1) Determine molecular mechanisms by which the neuronal TFs
and RBPs we have identified coordinately control sad-1 alternative splicing in touch neurons, 2) Define
functional consequences of dysregulated touch neuron transcriptomes when these regulatory factors or their
target transcripts are lost, and 3) Systematically identify neuronal TFs and RBPs coordinately controlling
neuron fate and function in specific tractable neuronal cell types. The expected outcomes of the proposed work
are to determine mechanisms and functional consequences of coordinate TF-RBP control over single neuron
transcriptomes. The proposed approach is innovative as it departs from the status quo by examining causal
mechanisms and consequences of single-neuron transcriptomic regulation across multiple layers of gene
regulation in vivo. It is significant because it is expected to advance the field of single-neuron transcriptomics
into causal mechanisms, functional consequences, and coordinated regulation in single neurons in vivo.
Ultimately, these findings will inform our understanding of how nervous systems develop and are specified.
单个神经元的发育和功能是由它们独特的转录组特性决定的,但是
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Norris其他文献
Adam Norris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Norris', 18)}}的其他基金
COORDINATE CONTROL OF INDIVIDUAL NEURONAL TRANSCRIPTOMES BY TRANSCRIPTION FACTORS AND RNA BINDING PROTEINS
转录因子和 RNA 结合蛋白对个体神经元转录组的协调控制
- 批准号:
10091530 - 财政年份:2020
- 资助金额:
$ 31.41万 - 项目类别:
COORDINATE CONTROL OF INDIVIDUAL NEURONAL TRANSCRIPTOMES BY TRANSCRIPTION FACTORS AND RNA BINDING PROTEINS
转录因子和 RNA 结合蛋白对个体神经元转录组的协调控制
- 批准号:
10542419 - 财政年份:2020
- 资助金额:
$ 31.41万 - 项目类别:
COORDINATE CONTROL OF INDIVIDUAL NEURONAL TRANSCRIPTOMES BY TRANSCRIPTION FACTORS AND RNA BINDING PROTEINS
转录因子和 RNA 结合蛋白对个体神经元转录组的协调控制
- 批准号:
10328874 - 财政年份:2020
- 资助金额:
$ 31.41万 - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
10386536 - 财政年份:2019
- 资助金额:
$ 31.41万 - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
9796939 - 财政年份:2019
- 资助金额:
$ 31.41万 - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
10642832 - 财政年份:2019
- 资助金额:
$ 31.41万 - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
10428588 - 财政年份:2019
- 资助金额:
$ 31.41万 - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
9982342 - 财政年份:2019
- 资助金额:
$ 31.41万 - 项目类别:
相似海外基金
Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
- 批准号:
488788 - 财政年份:2023
- 资助金额:
$ 31.41万 - 项目类别:
Operating Grants
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
- 批准号:
10577186 - 财政年份:2023
- 资助金额:
$ 31.41万 - 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
- 批准号:
10717440 - 财政年份:2023
- 资助金额:
$ 31.41万 - 项目类别:
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
- 批准号:
10638347 - 财政年份:2023
- 资助金额:
$ 31.41万 - 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
- 批准号:
10749474 - 财政年份:2023
- 资助金额:
$ 31.41万 - 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
- 批准号:
10673458 - 财政年份:2023
- 资助金额:
$ 31.41万 - 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
- 批准号:
2884151 - 财政年份:2023
- 资助金额:
$ 31.41万 - 项目类别:
Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
- 批准号:
10660668 - 财政年份:2023
- 资助金额:
$ 31.41万 - 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
- 批准号:
2239056 - 财政年份:2023
- 资助金额:
$ 31.41万 - 项目类别:
Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
- 批准号:
468851650 - 财政年份:2022
- 资助金额:
$ 31.41万 - 项目类别:
Research Grants














{{item.name}}会员




