Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
基本信息
- 批准号:9796939
- 负责人:
- 金额:$ 35.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAlternative SplicingAnimalsBiological PhenomenaBiological ProcessCRISPR/Cas technologyCaenorhabditis elegansCellsDiseaseEnsureGene ExpressionGene Expression ProfileGene Expression RegulationGenesGeneticGenetic TranscriptionGenomeHeightIndividualMalignant NeoplasmsMethodsModificationNematodaPhenotypePredispositionProtein IsoformsRNA ProcessingRNA SplicingRNA-Binding ProteinsRegulationRegulator GenesReporterTimeTranslationscell typecombinatorialforward geneticsgenetic profilingin vivomutantnovelreverse geneticstranscription factor
项目摘要
ABSTRACT
Biological processes are controlled by multiple genes working in concert to achieve a given function. This
phenomenon is apparent in genetic interactions, defined as a phenotype observed in a double mutant not
easily explained by the phenotypes in the respective single mutants. While genetic interactions have long
been recognized as important drivers of animal phenotypes, it has not been possible to perform genetic
interaction analysis in animals in a systematic, null allele, reverse-genetics fashion. This is a critical gap,
because understanding healthy and disease states in animals requires an appreciation of how multiple genes
coordinately affect a given phenotype. To overcome this gap, we have developed a CRISPR/Cas9 toolkit that
enables targeted genome modification and subsequent genetic interaction analysis in the nematode worm
Caenorhabditis elegans, thus enabling for the first time systematic targeted genetic interaction profiling in
animals. We will focus on genetic interactions among factors regulating gene expression. Proper gene
expression is controlled by multiple layers of regulation (e.g. transcription, RNA processing, translation) but
little is known about how these layers are coordinated at the level of single cells. The first direction of the lab
therefore is to profile genetic interactions between different layers of gene expression, specifically focusing on
transcription factors (TFs) and RNA binding proteins (RBPs). Double mutant combinations with unexpected
phenotypes will be the entry point to mechanistic understanding of how combinations of TFs and RBPs
coordinately control gene expression. The second direction of the lab will be to understand the regulation of
alternative splicing at the single cell level by combinations of TFs and RBPs. Individual cell types can be
defined by the presence of TFs and the resulting gene expression patterns, but can also be further refined by
the presence of splicing factors and the resulting isoforms expressed. We have created a large number of in
vivo splicing reporters in C. elegans and found extensive alternative splicing at the single cell level. Using a
combination of forward and reverse genetics we have identified a number of splicing factors, as well as a
surprising number of TFs, important for specific alternative splicing regimes at the single cell level. We now
plan to investigate the mechanisms by which these factors combine to control splicing at the single cell level,
as well as the functional consequences of such splicing. Together these directions will represent a key
advance in our understanding of combinatorial action of gene regulatory factors and how they coordinately
ensure proper gene expression.
摘要
生物过程由多个基因共同控制,以实现给定的功能。这
在遗传相互作用中,这种现象是明显的,定义为在双突变体中观察到的表型,
很容易解释的表型在各自的单一突变体。虽然基因的相互作用
被认为是动物表型的重要驱动因素,但还不可能进行遗传学研究。
以系统的、无效等位基因的、反向遗传学的方式在动物中进行相互作用分析。这是一个关键的差距,
因为了解动物的健康和疾病状态需要了解多种基因是如何
协同影响给定的表型。为了克服这一差距,我们开发了一个CRISPR/Cas9工具包,
能够在线虫中进行靶向基因组修饰和随后的遗传相互作用分析,
秀丽隐杆线虫,从而使首次系统的有针对性的遗传相互作用分析,
动物我们将集中在基因表达调控因子之间的遗传相互作用。合适的基因
表达受多层调控(例如转录、RNA加工、翻译)控制,但
关于这些层如何在单个细胞的水平上协调的知之甚少。实验室的第一个方向
因此,分析不同基因表达层之间的遗传相互作用,特别关注
转录因子(TF)和RNA结合蛋白(RBP)。双突变体组合,
表型将是从机理上理解TF和RBP组合如何
协调控制基因表达。实验室的第二个方向是了解
通过TF和RBP的组合在单细胞水平上进行可变剪接。单个细胞类型可以是
通过TF的存在和由此产生的基因表达模式来定义,但也可以通过以下方式进一步细化
剪接因子的存在和表达的所得同种型。我们创造了大量的
体内剪接报告基因在C.并在单细胞水平上发现了广泛的选择性剪接。使用
结合正向和反向遗传学,我们已经确定了一些剪接因子,以及一个
在单个细胞水平上,这对于特定的选择性剪接机制是重要的。我们现在
计划研究这些因子联合收割机在单细胞水平控制剪接的机制,
以及这种剪接的功能结果。这些方向合在一起就代表了一把钥匙
我们对基因调控因子的组合作用以及它们如何协调作用的理解取得了进展
确保基因正确表达。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Norris其他文献
Adam Norris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Norris', 18)}}的其他基金
COORDINATE CONTROL OF INDIVIDUAL NEURONAL TRANSCRIPTOMES BY TRANSCRIPTION FACTORS AND RNA BINDING PROTEINS
转录因子和 RNA 结合蛋白对个体神经元转录组的协调控制
- 批准号:
9885571 - 财政年份:2020
- 资助金额:
$ 35.89万 - 项目类别:
COORDINATE CONTROL OF INDIVIDUAL NEURONAL TRANSCRIPTOMES BY TRANSCRIPTION FACTORS AND RNA BINDING PROTEINS
转录因子和 RNA 结合蛋白对个体神经元转录组的协调控制
- 批准号:
10091530 - 财政年份:2020
- 资助金额:
$ 35.89万 - 项目类别:
COORDINATE CONTROL OF INDIVIDUAL NEURONAL TRANSCRIPTOMES BY TRANSCRIPTION FACTORS AND RNA BINDING PROTEINS
转录因子和 RNA 结合蛋白对个体神经元转录组的协调控制
- 批准号:
10542419 - 财政年份:2020
- 资助金额:
$ 35.89万 - 项目类别:
COORDINATE CONTROL OF INDIVIDUAL NEURONAL TRANSCRIPTOMES BY TRANSCRIPTION FACTORS AND RNA BINDING PROTEINS
转录因子和 RNA 结合蛋白对个体神经元转录组的协调控制
- 批准号:
10328874 - 财政年份:2020
- 资助金额:
$ 35.89万 - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
10386536 - 财政年份:2019
- 资助金额:
$ 35.89万 - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
10642832 - 财政年份:2019
- 资助金额:
$ 35.89万 - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
10428588 - 财政年份:2019
- 资助金额:
$ 35.89万 - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
9982342 - 财政年份:2019
- 资助金额:
$ 35.89万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 35.89万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:














{{item.name}}会员




