Spatial organization of mycobacterial cell wall biosynthesis
分枝杆菌细胞壁生物合成的空间组织
基本信息
- 批准号:9884733
- 负责人:
- 金额:$ 23.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-05 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsAnabolismAnimal ModelAntibioticsAreaBacillus subtilisBacterial InfectionsBindingBinding ProteinsBiochemicalBiochemistryBiotinylationCell FractionationCell WallCell membraneCellsComplexDaptomycinDataDetectionDissociationDrug TargetingDrug resistanceEnzymesEvaluationFluorescence MicroscopyFoundationsGeneticGoalsGrowthIn VitroIntracellular MembranesKnowledgeLabelLaboratoriesLigaseLinkLipidsMembraneMetabolicMicroscopicMicroscopyMissionModelingMycobacterium smegmatisMycobacterium tuberculosisPeptidoglycanPhysiologyPlayPolymerasePolymersProcessProductionProteinsProteomicsPublic HealthPublishingResearchResolutionRodRoleRouteTestingTextTherapeuticTuberculosisUnited States National Institutes of HealthWorkantimicrobialcell envelopecell growthclinically significantextracellularfight againstinnovationinsightinterestmuramyl-NAc-(pentapeptide)pyrophosphoryl-undecaprenolmycobacterialpathogenperiplasmpolymerizationresistant strainsynthetic enzyme
项目摘要
PROJECT SUMMARY/ABSTRACT
There is a fundamental gap in understanding how peptidoglycan (PG) is biosynthesized in a spatially
coordinated fashion to support the polar growth of Mycobacterium tuberculosis (Mtb). This gap represents an
important problem because the elongation of the cell envelope, an essential process of bacterial growth, is
incomprehensive without understanding the precise mechanism of spatially coordinated PG precursor
biosynthesis, transport and cell wall integration. The intracellular membrane domain (IMD) is a discrete area of
the plasma membrane (PM) particularly enriched in the subpolar region of actively growing mycobacterial cells.
The long-term goal is to understand the role of PM partitioning in mycobacterial physiology and to identify
vulnerabilities in this process. As the next step to achieve this goal, the overall objective of this proposal is to
gain the fundamental insights into the spatial compartmentalization of PG assembly, so that the IMD can be
evaluated as a target for inhibiting the assembly of the PG layer. The central hypothesis is that the IMD is a
region of the PM where polyprenol-linked PG precursors are synthesized. The rationale is that characterizing
the PM partitioning of the PG biosynthesis will lay the foundation for understanding the role of the IMD in the
cell wall elongation, thereby beginning to understand how the robust pathogen Mtb produces and maintains its
highly complex cell wall. Guided by published studies and preliminary data from the applicant’s laboratories,
this hypothesis will be tested by pursuing two specific aims: 1) Determine the subcellular localization of
proteins that synthesize, transport and polymerize PG precursors; 2) Determine the localized
production of polyprenol-linked PG precursors and PG polymer. Under the first aim, the working
hypothesis, that PG biosynthetic enzymes are spatially and biochemically segregated in the PM, will be
addressed by quantitative and super resolution microscopy and by subcellular fractionation. Under the second
aim, the working hypothesis, that precursors and polymerized PG are in distinct PM regions, will be determined
by bioorthogonal metabolic labeling of PG for microscopic detection and in vitro biotinylation of PG precursors
for biochemical detection. The project is innovative because it combines synergistic expertise of two
laboratories to dissect the role of compartmentalized PM in mycobacterial PG synthesis, a substantive
departure from the status quo in both concept and execution. The proposed research is significant because it
reveals whether PM partitioning organizes PG synthesis, an established drug target of high clinical significance.
The key data obtained from this study will form the basis to further investigate the role of the IMD in cell wall
elongation of Mtb, enhancing our evaluation of IMD disruption as a new route for inhibiting PG synthesis and
mycobacterial cell growth.
!
项目摘要/摘要
在理解肽聚糖(PG)是如何在空间上被生物合成的过程中,存在着一个根本的空白
协调支持结核分枝杆菌(结核分枝杆菌)极地生长。这一差距代表着一个
这是一个重要的问题,因为细胞包膜的伸长是细菌生长的一个基本过程
对空间配位PG前驱体的精确机制缺乏全面的了解
生物合成、运输和细胞壁整合。细胞内膜结构域(IMD)是一个离散的区域
质膜(PM)尤其富含在生长活跃的分枝杆菌细胞的亚极区。
长期目标是了解PM分配在分枝杆菌生理学中的作用,并确定
这一过程中的漏洞。作为实现这一目标的下一步,这项提议的总体目标是
对PG组件的空间分区有基本的了解,以便IMD可以
被评估为抑制PG层的组装的目标。中心假设是IMD是一种
PM的区域,在那里合成聚戊烯醇联的PG前体。其基本原理是,
PG生物合成的PM划分将为理解IMD在生物合成中的作用奠定基础
细胞壁伸长,从而开始了解强大的病原体Mtb是如何产生和维持其
高度复杂的细胞壁。以已发表的研究和申请人实验室的初步数据为指导,
这一假说将通过追求两个具体目标来检验:1)确定细胞内的亚细胞定位
合成、运输和聚合PG前体的蛋白质;2)确定定位的
聚戊烯醇交联型PG前驱体和PG聚合物的生产。在第一个目标下,工作
假设PG生物合成酶在PM中在空间和生化上是分离的,将是
通过定量和超分辨率显微镜以及亚细胞分离来解决。在第二个下面
目的,将确定工作假设,即前体和聚合PG位于不同的PM区域
生物正交代谢法用于PG前体的显微检测和体外生物素化
用于生化检测。该项目具有创新性,因为它结合了两个项目的协同专业知识
实验室剖析分隔PM在分枝杆菌PG合成中的作用,这是一种实质性的
在理念和执行上都背离现状。这项拟议的研究意义重大,因为它
揭示PM分割是否组织PG合成,PG合成是一个具有很高临床意义的既定药物靶点。
这项研究获得的关键数据将成为进一步研究IMD在细胞壁中的作用的基础
Mtb的延长,增强了我们对IMD中断作为抑制PG合成和
分枝杆菌细胞生长。
好了!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yasu S Morita其他文献
Yasu S Morita的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yasu S Morita', 18)}}的其他基金
Cell envelope integrity in mycobacteria: interplay of lipoglycans, peptidoglycan, and capsular polysaccharides
分枝杆菌细胞包膜完整性:脂聚糖、肽聚糖和荚膜多糖的相互作用
- 批准号:
10592789 - 财政年份:2022
- 资助金额:
$ 23.09万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 23.09万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 23.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别: