Inferring Kinase Activity Profiles from Phosphoproteomic Data

从磷酸化蛋白质组数据推断激酶活性概况

基本信息

  • 批准号:
    9755392
  • 负责人:
  • 金额:
    $ 19.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-03 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary Phosphorylation can regulate protein function, which is a cornerstone of normal tissue development and home- ostasis. However, kinases, the enzymes that catalyze protein phosphorylation, are often dysregulated in cancer. Recently, advances have been made to measure global phosphorylation within human patient tumor samples. The hope is that this data holds the key to identifying patient-specific targets in cancer therapy. Unfortunately, challenges exist in interpreting phosphorylation data and its reflection of the underlying dysregulation of signaling networks. The goal of this project is to develop an algorithm that translates the measurements of phosphorylation in human samples to a prediction of kinase activity profiles. The kinase activity profiles could then be used to iden- tify new targets and classify tumor types. This goal will be achieved by: the development of graph-based score, based on predicted kinase-substrate relationships, interpretation of that score through statistical frameworks, and testing and improvement of the algorithms on available control and patient data.
项目总结

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KinPred: A unified and sustainable approach for harnessing proteome-level human kinase-substrate predictions.
  • DOI:
    10.1371/journal.pcbi.1008681
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Xue B;Jordan B;Rizvi S;Naegle KM
  • 通讯作者:
    Naegle KM
KSTAR: An algorithm to predict patient-specific kinase activities from phosphoproteomic data.
  • DOI:
    10.1038/s41467-022-32017-5
  • 发表时间:
    2022-07-25
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristen M Naegle其他文献

Kristen M Naegle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristen M Naegle', 18)}}的其他基金

Protein Phosphorylation Networks in Health and Disease
健康和疾病中的蛋白质磷酸化网络
  • 批准号:
    10682983
  • 财政年份:
    2023
  • 资助金额:
    $ 19.58万
  • 项目类别:
Inferring Kinase Activity from Tumor Phosphoproteomic Data
从肿瘤磷酸化蛋白质组数据推断激酶活性
  • 批准号:
    10743051
  • 财政年份:
    2023
  • 资助金额:
    $ 19.58万
  • 项目类别:
A synthetic toolkit for the recombinant production of tyrosine phosphorylated proteins and peptides
用于重组生产酪氨酸磷酸化蛋白和肽的合成工具包
  • 批准号:
    10673930
  • 财政年份:
    2022
  • 资助金额:
    $ 19.58万
  • 项目类别:
Systematic approaches to reveal novel regulatory functions of tyrosine phosphorylation
揭示酪氨酸磷酸化新调节功能的系统方法
  • 批准号:
    10456652
  • 财政年份:
    2020
  • 资助金额:
    $ 19.58万
  • 项目类别:
Systematic approaches to reveal novel regulatory functions of tyrosine phosphorylation
揭示酪氨酸磷酸化新调节功能的系统方法
  • 批准号:
    10256636
  • 财政年份:
    2020
  • 资助金额:
    $ 19.58万
  • 项目类别:
Systematic approaches to reveal novel regulatory functions of tyrosine phosphorylation
揭示酪氨酸磷酸化新调节功能的系统方法
  • 批准号:
    10029062
  • 财政年份:
    2020
  • 资助金额:
    $ 19.58万
  • 项目类别:
Systematic approaches to reveal novel regulatory functions of tyrosine phosphorylation
揭示酪氨酸磷酸化新调节功能的系统方法
  • 批准号:
    10657453
  • 财政年份:
    2020
  • 资助金额:
    $ 19.58万
  • 项目类别:

相似海外基金

Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 19.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 19.58万
  • 项目类别:
    Standard Grant
Bayesian analysis of generative models of sequence insertion events in HIV-1 envelope glycoproteins
HIV-1 包膜糖蛋白序列插入事件生成模型的贝叶斯分析
  • 批准号:
    574483-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.58万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210280
  • 财政年份:
    2022
  • 资助金额:
    $ 19.58万
  • 项目类别:
    Standard Grant
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
  • 批准号:
    2206934
  • 财政年份:
    2022
  • 资助金额:
    $ 19.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210281
  • 财政年份:
    2022
  • 资助金额:
    $ 19.58万
  • 项目类别:
    Standard Grant
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
  • 批准号:
    2113375
  • 财政年份:
    2021
  • 资助金额:
    $ 19.58万
  • 项目类别:
    Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
  • 批准号:
    10701881
  • 财政年份:
    2021
  • 资助金额:
    $ 19.58万
  • 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
  • 批准号:
    10298072
  • 财政年份:
    2021
  • 资助金额:
    $ 19.58万
  • 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
  • 批准号:
    10473754
  • 财政年份:
    2021
  • 资助金额:
    $ 19.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了