Visualization hub for genomics data exploration and translational discovery
用于基因组学数据探索和转化发现的可视化中心
基本信息
- 批准号:9756153
- 负责人:
- 金额:$ 72.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-13 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:Automobile DrivingBig DataBioinformaticsBiologicalCancer PatientCause of DeathClinicalClinical ResearchClinical TreatmentClinical TrialsCommunitiesComputersDNA SequenceDNA copy numberDataData SetDevelopmentDiseaseDisease ProgressionEnsureEnvironmentEvolutionFutureGenome Data Analysis NetworkGenomic medicineGenomicsGoalsImageryImmune responseImmunologicsImmunotherapyIndividualInstitutionInternationalInvestigationKnowledgeLibrariesMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMedicineMetastatic MelanomaMolecularOncoproteinsOnline SystemsPatient-Focused OutcomesPatientsPerformancePlayPrincipal InvestigatorProcessProteinsRNAReceptor CellReceptors, Antigen, B-CellResearchResearch PersonnelResearch Project GrantsResistanceRoleScientistSecureStructureSystemT-Cell ReceptorTestingTherapeuticTimeVisualVisualization softwareWorkanticancer researchbasecancer carecancer genomecancer genomicscancer initiationcancer therapycloud platformdata accessdata hubdata resourcedata visualizationdesigneffective therapyexperienceexperimental studygenome-widegenomic dataimmunogenicimprovedinteroperabilityknowledge translationmeetingsneglectneoantigensnext generationnovelnovel therapeuticsopen sourcepersonalized medicinepetabyteportabilityprecision medicineprogramsrepositoryresponsesmall moleculesoftware repositorysuccesssymposiumtherapy resistanttooltranscriptometreatment responsetumorusabilityuser-friendlyweb interfaceworking group
项目摘要
Project Summary/Abstract
Large NCI clinical trials and research projects have been generating data on cancer genomes at an
unprecedented rate, elucidating the mechanisms of cancer initiation and evolution, as well as resistance to
therapy. To fully utilize this comprehensive data resource, which has exceeded a petabyte (1015 bytes) of data,
the scientific community needs deep, user-friendly interactive computer visualizations of the data. These will
empower investigators to discover the molecular processes driving each patient's cancer, and to identify
potential translations of this knowledge into new therapies, ultimately advancing both our knowledge of cancer
mechanisms and patient outcomes.
We propose to develop a web-based Data Hub and Viz Hub platform to allow researchers to visualize the
richness of the NCI's cancer genomics data from a single web interface. Visualizations will be composed of a
set of “bio-centric” views developed by the bioinformatics community and made available in BioJS, an open-
source repository of tools to represent biological data. This will establish a new paradigm of web-based
biological data visualization development by way of sharable and reusable modular open source components.
To initiate the Viz Hub platform, we will integrate seven popular 3rd-party bioinformatics visualizations into the
existing UCSC Xena Browser utilizing a plug-and-play framework. We will then work closely with several
clinical labs to develop two new translational visualizations for the next generation of genomic medicine. One
will be a Longitudinal Omics Integrator, giving researchers a highlighted overview of a patient while drilling
down into genomic and functional data collected throughout treatment. Another will help researchers
investigate responses to various new types of immunotherapy, which promise to revolutionize cancer
treatment. This Immuno-Tracker and Immunoediting Viewer will show how immunogenic neoantigens, T-cell
receptors, and B-cell receptors change over disease progression and in response to treatment.
The visualization needs of the scientific community, NCI's Genomic Data Analysis Network, and Disease
Working groups will be fully supported through our system of public and restricted Data Hubs. Our high-
performance Data Hubs will be easy to install on a diverse range of computing environments. Users will be
able to integrate public and restricted data, from large consortia and individual researchers (including their own
labs), seamlessly on our web-based Viz Hub. Our commitment to bioinformatics community standards, such as
GA4GH and BioJS, ensures that our contributions will be interoperable. Our designs will be vetted by users
through testing in tumor boards and at designated booths at international cancer meetings. This will ensure
that our platform will effectively serve researchers, biologists and clinicians now and into the future of precision
medicine.
项目总结/摘要
NCI的大型临床试验和研究项目一直在以最快的速度生成癌症基因组数据。
前所未有的速度,阐明了癌症发生和演变的机制,以及对
疗法为了充分利用这一超过千万亿字节(1015字节)的综合数据资源,
科学界需要对数据进行深入的、用户友好的交互式计算机可视化。这些将
使研究人员能够发现驱动每个患者癌症的分子过程,
将这些知识转化为新的疗法,最终提高我们对癌症的认识,
机制和患者结局。
我们建议开发一个基于Web的数据中心和Viz Hub平台,让研究人员可以可视化
NCI的癌症基因组学数据的丰富性。可视化将由一个
一套“以生物为中心”的观点,由生物信息学社区开发,并在BioJS中提供,一个开放的,
表示生物数据的工具的源存储库。这将建立一个基于网络的新范式,
通过可共享和可重用的模块化开源组件进行生物数据可视化开发。
为了启动Viz Hub平台,我们将把七个流行的第三方生物信息学可视化整合到
现有的UCSC Xena浏览器使用即插即用框架。我们将与几个国家密切合作,
临床实验室为下一代基因组医学开发两种新的翻译可视化。一
将是一个纵向组学集成器,在钻孔时为研究人员提供患者的突出概述
在整个治疗过程中收集的基因组和功能数据。另一个将帮助研究人员
研究对各种新型免疫疗法的反应,这些疗法有望彻底改变癌症
治疗这个免疫追踪器和免疫编辑查看器将显示免疫原性新抗原,T细胞
受体和B细胞受体随疾病进展和对治疗的反应而变化。
科学界的可视化需求,NCI的基因组数据分析网络和疾病
工作组将通过我们的公共和限制数据中心系统得到充分支持。我们的高-
性能数据中心将易于安装在各种计算环境中。用户将
能够整合来自大型财团和个人研究人员(包括他们自己的)的公共和受限数据
实验室),在我们基于Web的Viz Hub上无缝连接。我们对生物信息学社区标准的承诺,例如
GA 4GH和BioJS,确保我们的贡献将是可互操作的。我们的设计将由用户审查
通过在肿瘤委员会和国际癌症会议的指定展位进行测试。这将确保
我们的平台将有效地为研究人员、生物学家和临床医生提供服务,
药
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Collisson其他文献
Eric Collisson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Collisson', 18)}}的其他基金
Optimizing Pancreatic Cancer Management with Next Generation Imaging and Liquid Biopsy
利用下一代成像和液体活检优化胰腺癌治疗
- 批准号:
10376196 - 财政年份:2021
- 资助金额:
$ 72.38万 - 项目类别:
Optimizing Pancreatic Cancer Management with Next Generation Imaging and Liquid Biopsy
利用下一代成像和液体活检优化胰腺癌治疗
- 批准号:
10584523 - 财政年份:2021
- 资助金额:
$ 72.38万 - 项目类别:
Understanding Efficacy and Fe(II)-Promoted Activation of 1,2,4-Trioxolanes in Cancer
了解 1,2,4-三氧戊环在癌症中的功效和 Fe(II) 促进的激活
- 批准号:
10374172 - 财政年份:2021
- 资助金额:
$ 72.38万 - 项目类别:
Understanding Efficacy and Fe(II)-Promoted Activation of 1,2,4-Trioxolanes in Cancer
了解 1,2,4-三氧戊环在癌症中的功效和 Fe(II) 促进的激活
- 批准号:
10622460 - 财政年份:2021
- 资助金额:
$ 72.38万 - 项目类别:
The structural and functional basis of MET exon 14 activation and acquired drug resistance
MET 外显子 14 激活和获得性耐药的结构和功能基础
- 批准号:
9754544 - 财政年份:2019
- 资助金额:
$ 72.38万 - 项目类别:
The structural and functional basis of MET exon 14 activation and acquired drug resistance
MET 外显子 14 激活和获得性耐药的结构和功能基础
- 批准号:
9892984 - 财政年份:2019
- 资助金额:
$ 72.38万 - 项目类别:
The structural and functional basis of MET exon 14 activation and acquired drug resistance
MET 外显子 14 激活和获得性耐药的结构和功能基础
- 批准号:
10375379 - 财政年份:2019
- 资助金额:
$ 72.38万 - 项目类别:
Optimizing Treatment Approaches to Lung Cancers Harboring MET Exon 14 mutations
优化含有 MET 外显子 14 突变的肺癌的治疗方法
- 批准号:
9891979 - 财政年份:2019
- 资助金额:
$ 72.38万 - 项目类别:
Optimizing Treatment Approaches to Lung Cancers Harboring MET Exon 14 mutations
优化含有 MET 外显子 14 突变的肺癌的治疗方法
- 批准号:
9763138 - 财政年份:2019
- 资助金额:
$ 72.38万 - 项目类别:
Optimizing Treatment Approaches to Lung Cancers Harboring MET Exon 14 mutations
优化含有 MET 外显子 14 突变的肺癌的治疗方法
- 批准号:
10589867 - 财政年份:2019
- 资助金额:
$ 72.38万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Bioinformatics and Big Data Analytics
生物信息学和大数据分析
- 批准号:
CRC-2021-00259 - 财政年份:2022
- 资助金额:
$ 72.38万 - 项目类别:
Canada Research Chairs
Bioinformatics And Big Data Analytics
生物信息学和大数据分析
- 批准号:
CRC-2016-00137 - 财政年份:2021
- 资助金额:
$ 72.38万 - 项目类别:
Canada Research Chairs
Byte-sized bioinformatics: introducing Big Data through computational biology
字节大小的生物信息学:通过计算生物学引入大数据
- 批准号:
ST/T000872/1 - 财政年份:2020
- 资助金额:
$ 72.38万 - 项目类别:
Research Grant
Bioinformatics and big data analytics
生物信息学和大数据分析
- 批准号:
CRC-2016-00137 - 财政年份:2020
- 资助金额:
$ 72.38万 - 项目类别:
Canada Research Chairs
CLIMB-BIG-DATA: A Cloud Infrastructure for Big-Data Microbial Bioinformatics
CLIMB-BIG-DATA:大数据微生物生物信息学的云基础设施
- 批准号:
MR/T030062/1 - 财政年份:2020
- 资助金额:
$ 72.38万 - 项目类别:
Research Grant
Mining and Processing Big Data in Bioinformatics: Mouse Phenotyping using Flow Cytometry
生物信息学中的大数据挖掘和处理:使用流式细胞术进行小鼠表型分析
- 批准号:
505116-2017 - 财政年份:2019
- 资助金额:
$ 72.38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bioinformatics and big data analytics
生物信息学和大数据分析
- 批准号:
CRC-2016-00137 - 财政年份:2019
- 资助金额:
$ 72.38万 - 项目类别:
Canada Research Chairs
Bioinformatics and big data analytics
生物信息学和大数据分析
- 批准号:
CRC-2016-00137 - 财政年份:2018
- 资助金额:
$ 72.38万 - 项目类别:
Canada Research Chairs
Mining and Processing Big Data in Bioinformatics: Mouse Phenotyping using Flow Cytometry
生物信息学中的大数据挖掘和处理:使用流式细胞术进行小鼠表型分析
- 批准号:
505116-2017 - 财政年份:2018
- 资助金额:
$ 72.38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bioinformatics and big data analytics
生物信息学和大数据分析
- 批准号:
CRC-2016-00137 - 财政年份:2017
- 资助金额:
$ 72.38万 - 项目类别:
Canada Research Chairs