Systems Biology based Proteogenomic Translator for Cancer Marker Discovery towards Precision Medicine
基于系统生物学的蛋白质基因组翻译器,用于癌症标记物发现,迈向精准医学
基本信息
- 批准号:9759648
- 负责人:
- 金额:$ 88.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-19 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAntineoplastic AgentsBiologicalBiological AssayCancer BiologyClinicalCollectionComplexComputer softwareDNA Sequence AlterationDataData AnalysesData SetDatabasesDiseaseDisease OutcomeDrug TargetingDrug resistanceEnsureGene ProteinsGenesGenomicsGoalsImageryIndividualInternetInvestigationKnowledgeLearningLiteratureMalignant NeoplasmsMarker DiscoveryMethodsMethylationMiningModelingMolecularNetwork-basedNormal tissue morphologyOncogenesPathway AnalysisPathway interactionsPatternPhenotypePlayPost-Translational Protein ProcessingPropertyProteinsProteomicsResearchResourcesRoleSeriesSet proteinShapesSignal Transduction PathwayStatistical Data InterpretationStatistical MethodsStructureSystemSystems BiologyTechniquesTestingTherapeuticTimeTumor SubtypeTumor TissueVisualization softwareWorkactionable mutationanalysis pipelineassay developmentbasebioinformatics toolbiomarker selectioncancer biomarkerscancer typecandidate markercandidate selectionclinically relevantcomputerized toolsdata modelingdisease phenotypedisorder subtypeexperienceexperimental studygenetic regulatory proteingenomic datahigh dimensionalityhuman diseaseimprovedmalignant breast neoplasmmultidimensional datamutational statusneoplastic cellnovelprecision medicinepredictive markerprogramsprotein biomarkersproteogenomicssuccesstooltranscriptometranscriptomicstumorweb services
项目摘要
PROJECT SUMMARY/ABSTRACT
The goal of our PGDAC is to improve understanding of the proteogenomic complexity of tumors. Towards this
goal, our First Aim is to apply network based system learning to reveal causative molecular regulatory
relationships contributing to varieties of phenotypes in cancer using CPTAC proteomic/genomic data. We will
start with a mixed effects model to (1) fix the batch effects in data from multi-plex proteomics experiments; and
(2) handle the large amount of missing data from abundance-dependent missing mechanisms in proteomic
data (Aim 1.1). We will then utilize a multivariate penalized regression framework to construct the global
regulatory networks between genomic alterations (such as DNA mutations, CNA, methylations), and protein as
well as their PTM (post translational modification) abundances (Aim 1.2). Such regulatory networks help to
elucidate how protein or pathway activities are shaped by genomic alterations in tumor cells. We will also
construct protein co-expression networks based on global-, phosphor-, glyco- and other PTM-proteomics data
(Aim 1.3). When constructing these networks, we will use advanced computational tools to effectively borrow
information from literatures, databases, and transcriptome profiles. In addition, we will model tumor and normal
tissues jointly, so that tumor specific interactions and network modules will be inferred with better accuracy.
Both Aims 1.2 and 1.3 will lead to a big collection of network modules, as well as functionally related protein
sets (e.g. proteins regulated by the same genomic alteration). These network modules and protein sets will
then be tested for their associations with disease phenotypes (Aim 1.4). In the end, we will derive a more
integrated view of commonalities and differences across multiple tumor types via a Pan-cancer analysis (Aim
1.5). Our Second Aim is to further develop methods, software, and web-tools to optimize the data analysis in
our PGDAC. We will develop novel statistical/computational tools tailored to CPTAC proteomics data;
implement these methods as computationally efficient software; and construct an integrated data analysis
pipeline (Aim 2.1). We also plan to develop a set of web service tools for visualization and biological annotation
of protein networks and clinical interpretation of proteomic data (Aim 2.2). Our Third Aim is to nominate novel
protein-based cancer biomarkers and drug targets for further investigation by targeted proteomics assays. We
will first utilize a prediction based scoring system to identify protein biomarkers that predict altered cancer
pathways, network modules and individual oncogenes; disease outcome and drug resistance; and
therapeutically distinct disease subtypes (Aim 3.1) We will then utilize network based tools to identify driver
players in selected proteins signature sets (Aim 3.2). These driver proteins could play important roles in
shaping the overall function of regulatory system, and thus serve as good candidates for cancer biomarkers
and drug targets. We will also take into consideration of domain knowledge of different diseases, as well as
technique constrains for developing targeted proteomics assays in biomarker selection.
!
项目摘要/摘要
我们的PGDAC的目标是提高对肿瘤蛋白质基因组学复杂性的理解。朝向这个方向
目标,我们的第一个目标是应用基于网络的系统学习来揭示致病分子调控。
利用CPTAC蛋白质组/基因组数据研究癌症不同表型的关系。我们会
从混合效应模型开始,(1)固定来自多组蛋白质组实验的数据中的批次效应;以及
(2)处理蛋白质组学中丰度依赖的缺失机制产生的大量缺失数据
数据(目标1.1)。然后,我们将利用多变量惩罚回归框架来构建全局
基因组改变(如DNA突变、CNA、甲基化)和蛋白质AS之间的调控网络
及其翻译后修饰(PTM)丰度(目标1.2)。这样的监管网络有助于
阐明肿瘤细胞中的基因组变化是如何塑造蛋白质或途径活性的。我们还将
基于全球、磷、糖和其他PTM蛋白质组学数据构建蛋白质共表达网络
(目标1.3)。在建设这些网络时,我们将使用先进的计算工具来有效地借用
来自文献、数据库和转录档案的信息。此外,我们还将模拟肿瘤和正常组织
组织联合,以便肿瘤特异性相互作用和网络模块将以更高的准确性推断。
AIMS 1.2和1.3都将产生大量的网络模块以及功能相关的蛋白质
SET(例如,受相同基因组改变调控的蛋白质)。这些网络模块和蛋白质集将
然后测试它们与疾病表型的相关性(目标1.4)。最终,我们将衍生出一个更多的
通过泛癌分析(AIM)综合查看多种肿瘤类型的共性和差异
1.5)。我们的第二个目标是进一步开发方法、软件和网络工具来优化数据分析
我们的PGDAC。我们将为CPTAC蛋白质组学数据开发新的统计/计算工具;
将这些方法作为计算效率高的软件实施;并构建集成的数据分析
管道(目标2.1)。我们还计划开发一套用于可视化和生物注释的Web服务工具
蛋白质网络和蛋白质组数据的临床解释(目标2.2)。我们的第三个目标是提名小说
以蛋白质为基础的癌症生物标记物和药物靶标,用于靶向蛋白质组学分析的进一步研究。我们
将首先利用基于预测的评分系统来识别预测癌症改变的蛋白质生物标记物
途径、网络模块和个体癌基因;疾病转归和耐药性;以及
治疗上不同的疾病亚型(目标3.1)然后我们将利用基于网络的工具来识别司机
选定蛋白质签名集中的玩家(目标3.2)。这些驱动蛋白可能在
塑造调控系统的整体功能,从而成为癌症生物标记物的良好候选者
和毒品目标。我们还将考虑不同疾病的领域知识,以及
生物标记物选择中发展靶向蛋白质组学分析的技术限制。
好了!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC E SCHADT其他文献
ERIC E SCHADT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC E SCHADT', 18)}}的其他基金
Integrated Multiscale Networks in Schizophrenia
精神分裂症的综合多尺度网络
- 批准号:
9101498 - 财政年份:2016
- 资助金额:
$ 88.04万 - 项目类别:
1/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
精神分裂症及相关疾病多维数据的 1/3 网络
- 批准号:
8501690 - 财政年份:2012
- 资助金额:
$ 88.04万 - 项目类别:
1/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
精神分裂症及相关疾病多维数据的 1/3 网络
- 批准号:
8666060 - 财政年份:2012
- 资助金额:
$ 88.04万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 88.04万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 88.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 88.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 88.04万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 88.04万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 88.04万 - 项目类别:














{{item.name}}会员




