Computational design of novel protein binders based on structure mining and learning from data
基于结构挖掘和数据学习的新型蛋白质结合剂的计算设计
基本信息
- 批准号:9887271
- 负责人:
- 金额:$ 40.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAgeAlgorithmsAmino Acid SequenceAntibodiesBackBasic ScienceBindingBinding ProteinsBinding SitesBiological AssayBiomedical ResearchCase StudyClinical ResearchCollectionCommunitiesComplementComplexComputer ModelsComputing MethodologiesCustomDataDevelopmentDiseaseDisease PathwayEngineeringFailureFeedbackGenerationsGeometryImageLabelLearningLibrariesLifeLigandsMethodologyMethodsMiningModernizationNatureOutcomePathway interactionsPatternPeptidesPharmaceutical PreparationsPhysiciansPropertyProtein Binding DomainProtein EngineeringProtein FamilyProteinsProtocols documentationPublishingReagentResearchRouteScientistSequence HomologsSignal TransductionSiteSourceSpecific qualifier valueSpecificityStructural ModelsStructureTechniquesTechnologyTertiary Protein StructureTestingTimeUpdateWorkbasedata archivedata warehousedesigndisease diagnosisempoweredexperimental studyextracellularflexibilityhigh throughput screeningimprovedinhibitor/antagonistiterative designlensmodel developmentnovelnovel strategiesprotein structurerepairedresearch and developmentscaffoldscreeningsmall moleculestatisticsstructural biologysuccesssynergismtherapeutic developmenttool
项目摘要
Our long-term objective is to turn computational protein design into a disruptive technology platform that will
enable the routine and rapid generation of reagents for detecting proteins or perturbing their functions. Currently,
research and therapy rely on small molecules and/or antibodies for these tasks. These are powerful tools, but
they can be slow and expensive to develop, and they do not meet all needs. Designer peptides or mini-proteins
have high potential to bind extracellular or intracellular targets either as labels (e.g., for imaging) or as functional
modulators (e.g., interaction inhibitors), for applications in basic and clinical research and in disease diagnosis
and treatment. Existing tools for designing such custom proteins rely on experimental library screening,
sometimes guided or supported by computational modeling of structure. Despite the immense value such
molecules would bring to basic biomedical research and therapeutic development, there are not yet rapid and
facile routes to obtaining designed proteins with desired properties. Computational methods can potentially
address this need, but existing technology is not sufficiently reliable, flexible or automated for routine use.
Compared to the mid-1990’s, when the modern approach to computational protein design was developed, we
live in a data and technology-empowered age. The premise of this proposal is that we can increase the range of
problems that can be solved using computational design, and also dramatically improve success rates, by
making full use of the proven rules of sequence-structure compatibility encoded in known natural structures and
their homologous sequences. The Protein Data Bank (the collection of all known protein structures) has grown
10-fold since 2000, placing us at a point where we can design novel proteins by constructing them from building
blocks used in nature. We have implemented a new design framework that is based on this principle and that is
different in fundamental aspects from all previously published alternatives. Tests on diverse tasks demonstrate
outstanding success. To further develop our approach, we propose methodological advances that we will
implement, test and then apply to protein design challenges involving detecting or inhibiting protein recognition
domains. We will develop and apply methods to: automatically identify design strategies for binding to a target
protein, score and rank specific design candidates, design libraries that will be screened to provide rich
experimental data about successes and failures, and automatically feed experimental data back into model
development in a principled way. Outcomes will include new methodology that will be shared with the community,
computational predictions of high-ranked interface design sites that can inform analysis of structures and
pathways, and experimentally validated designer molecules that bind to protein domains important for signaling
in disease pathways.
我们的长期目标是将计算蛋白设计变成一个破坏性的技术平台
启用常规和快速生成试剂,以检测蛋白质或扰动其功能。现在,
研究和治疗依赖于这些任务的小分子和/或抗体。这些是强大的工具,但是
它们可以缓慢而昂贵,并且无法满足所有需求。设计师Pepperides或迷你蛋白
具有很高的细胞外或细胞内靶标的标签(例如,成像)或功能性具有很高的潜力
调节剂(例如相互作用抑制剂),用于基础和临床研究以及疾病诊断中的应用
和治疗。现有设计这种自定义蛋白质的工具依赖于实验库筛选,
有时由结构的计算建模指导或支持。尽管有巨大的价值
分子会带来基本的生物医学研究和治疗性发展,尚不迅速
可容纳具有所需特性的设计蛋白质的便利路线。计算方法可能可能
满足这种需求,但是现有技术不足以可靠,灵活或自动化供日常使用。
与1990年代中期相比,当开发了现代计算蛋白设计方法时,我们
生活在数据和技术授权的年龄中。该提议的前提是我们可以增加
可以使用计算设计解决的问题,并通过
充分利用已知的自然结构中编码的序列结构兼容性规则
它们的同源序列。蛋白质数据库(所有已知蛋白质结构的收集)已生长
自2000年以来,10倍,将我们置于我们可以通过建造建造新颖蛋白质来设计新颖蛋白质的时刻
自然中使用的块。我们已经实施了一个基于此原则的新设计框架,也就是说
基本方面不同于所有以前发表的替代方案。对潜水员任务的测试证明了
杰出的成功。为了进一步发展我们的方法,我们提出了方法论上的进步,我们将
实施,测试,然后应用于蛋白质设计挑战,涉及检测或抑制蛋白质识别
域。我们将开发和应用方法:自动确定与目标结合的设计策略
蛋白质,得分和排名特定的设计候选者,将筛选以提供丰富的设计库
有关成功和失败的实验数据,并自动将实验数据送回模型
以主要方式发展。成果将包括将与社区共享的新方法,
高排名界面设计站点的计算预测,可以为结构和结构分析提供信息
途径以及实验验证的设计器分子,与蛋白质结构域结合对于信号很重要
在疾病途径中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gevorg Grigoryan其他文献
Gevorg Grigoryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gevorg Grigoryan', 18)}}的其他基金
Computational design of novel protein binders based on structure mining and learning from data
基于结构挖掘和数据学习的新型蛋白质结合剂的计算设计
- 批准号:
10326369 - 财政年份:2020
- 资助金额:
$ 40.64万 - 项目类别:
Computational design of novel protein binders based on structure mining and learning from data
基于结构挖掘和数据学习的新型蛋白质结合剂的计算设计
- 批准号:
10079500 - 财政年份:2020
- 资助金额:
$ 40.64万 - 项目类别:
Computational design of novel protein binders based on structure mining and learning from data
基于结构挖掘和数据学习的新型蛋白质结合剂的计算设计
- 批准号:
10541909 - 财政年份:2020
- 资助金额:
$ 40.64万 - 项目类别:
Understanding transmembrane helix interaction on the structural level
在结构水平上理解跨膜螺旋相互作用
- 批准号:
7886793 - 财政年份:2009
- 资助金额:
$ 40.64万 - 项目类别:
Understanding transmembrane helix interaction on the structural level
在结构水平上理解跨膜螺旋相互作用
- 批准号:
7677038 - 财政年份:2009
- 资助金额:
$ 40.64万 - 项目类别:
Project 3: Protein Design for Selective Interference with LPA Signaling in Colon Cancer
项目 3:选择性干扰结肠癌 LPA 信号传导的蛋白质设计
- 批准号:
8813298 - 财政年份:
- 资助金额:
$ 40.64万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Fibroblasts in the establishment of the liver pre-metastatic niche
成纤维细胞在肝脏转移前生态位的建立中
- 批准号:
10742193 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别: