Computational design of novel protein binders based on structure mining and learning from data
基于结构挖掘和数据学习的新型蛋白质结合剂的计算设计
基本信息
- 批准号:10079500
- 负责人:
- 金额:$ 35.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAgeAlgorithmsAmino Acid SequenceAntibodiesBackBasic ScienceBindingBinding ProteinsBinding SitesBiological AssayBiomedical ResearchCase StudyClinical ResearchCollectionCommunitiesComplementComplexComputer ModelsComputing MethodologiesCustomDataDevelopmentDiseaseDisease PathwayEngineeringFailureFeedbackGenerationsGeometryImageLabelLearningLibrariesLifeLigandsMethodologyMethodsMiningModernizationNatureOutcomePathway interactionsPatternPeptidesPharmaceutical PreparationsPhysiciansPropertyProtein Binding DomainProtein EngineeringProtein FamilyProteinsProtocols documentationPublishingReagentResearchRouteScientistSequence HomologsSignal TransductionSiteSourceSpecific qualifier valueSpecificityStructural ModelsStructureTechniquesTechnologyTertiary Protein StructureTestingTimeUpdateWorkbasedata archivedesigndisease diagnosisempoweredexperimental studyextracellularflexibilityhigh throughput screeningimprovedinhibitor/antagonistiterative designlensmodel developmentnovelnovel strategiesprotein data bankprotein structurerepairedresearch and developmentscaffoldscreeningsmall moleculestatisticsstructural biologysuccesssynergismtherapeutic developmenttool
项目摘要
Our long-term objective is to turn computational protein design into a disruptive technology platform that will
enable the routine and rapid generation of reagents for detecting proteins or perturbing their functions. Currently,
research and therapy rely on small molecules and/or antibodies for these tasks. These are powerful tools, but
they can be slow and expensive to develop, and they do not meet all needs. Designer peptides or mini-proteins
have high potential to bind extracellular or intracellular targets either as labels (e.g., for imaging) or as functional
modulators (e.g., interaction inhibitors), for applications in basic and clinical research and in disease diagnosis
and treatment. Existing tools for designing such custom proteins rely on experimental library screening,
sometimes guided or supported by computational modeling of structure. Despite the immense value such
molecules would bring to basic biomedical research and therapeutic development, there are not yet rapid and
facile routes to obtaining designed proteins with desired properties. Computational methods can potentially
address this need, but existing technology is not sufficiently reliable, flexible or automated for routine use.
Compared to the mid-1990’s, when the modern approach to computational protein design was developed, we
live in a data and technology-empowered age. The premise of this proposal is that we can increase the range of
problems that can be solved using computational design, and also dramatically improve success rates, by
making full use of the proven rules of sequence-structure compatibility encoded in known natural structures and
their homologous sequences. The Protein Data Bank (the collection of all known protein structures) has grown
10-fold since 2000, placing us at a point where we can design novel proteins by constructing them from building
blocks used in nature. We have implemented a new design framework that is based on this principle and that is
different in fundamental aspects from all previously published alternatives. Tests on diverse tasks demonstrate
outstanding success. To further develop our approach, we propose methodological advances that we will
implement, test and then apply to protein design challenges involving detecting or inhibiting protein recognition
domains. We will develop and apply methods to: automatically identify design strategies for binding to a target
protein, score and rank specific design candidates, design libraries that will be screened to provide rich
experimental data about successes and failures, and automatically feed experimental data back into model
development in a principled way. Outcomes will include new methodology that will be shared with the community,
computational predictions of high-ranked interface design sites that can inform analysis of structures and
pathways, and experimentally validated designer molecules that bind to protein domains important for signaling
in disease pathways.
我们的长期目标是将计算蛋白质设计变成一个颠覆性的技术平台,
能够常规和快速地产生用于检测蛋白质或干扰其功能的试剂。目前,
研究和治疗依赖于用于这些任务的小分子和/或抗体。这些都是强大的工具,但
它们的开发可能缓慢而昂贵,而且不能满足所有需求。设计肽或微型蛋白质
具有作为标记物结合细胞外或细胞内靶的高潜力(例如,用于成像)或作为功能
调制器(例如,相互作用抑制剂),用于基础和临床研究以及疾病诊断
和治疗。用于设计这种定制蛋白的现有工具依赖于实验文库筛选,
有时由结构的计算模型引导或支持。尽管价值巨大,
分子将带来基础生物医学研究和治疗发展,目前还没有快速,
获得具有所需性质的设计蛋白质的简便途径。计算方法可能
虽然这些技术可以满足这一需求,但现有技术对于日常使用来说还不够可靠、灵活或自动化。
与20世纪90年代中期相比,当现代计算蛋白质设计方法被开发出来时,我们
生活在一个数据和技术赋能的时代。这项建议的前提是,我们可以增加
这些问题可以通过计算设计来解决,并大大提高成功率,
充分利用编码在已知天然结构中的序列-结构相容性的已证实规则,
它们的同源序列蛋白质数据库(所有已知蛋白质结构的集合)已经增长
10-自2000年以来翻了一倍,使我们能够通过构建新蛋白质来设计新蛋白质,
自然界中使用的积木。我们已经实现了一个新的设计框架,该框架基于这一原则,
在基本方面与之前发布的所有替代方案不同。对不同任务的测试表明,
非常成功为了进一步发展我们的方法,我们提出了方法上的进步,我们将
实施、测试并应用于蛋白质设计挑战,包括检测或抑制蛋白质识别
域.我们将开发和应用的方法:自动识别绑定到目标的设计策略
蛋白质,评分和排名具体的设计候选人,设计库,将被筛选,以提供丰富的
成功和失败的实验数据,并自动将实验数据反馈到模型中
以有原则的方式发展。成果将包括与社区分享的新方法,
高等级界面设计站点的计算预测,可以为结构分析提供信息,
途径,以及实验验证的设计分子,这些分子与对信号传导重要的蛋白质结构域结合,
疾病的传播途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gevorg Grigoryan其他文献
Gevorg Grigoryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gevorg Grigoryan', 18)}}的其他基金
Computational design of novel protein binders based on structure mining and learning from data
基于结构挖掘和数据学习的新型蛋白质结合剂的计算设计
- 批准号:
10326369 - 财政年份:2020
- 资助金额:
$ 35.42万 - 项目类别:
Computational design of novel protein binders based on structure mining and learning from data
基于结构挖掘和数据学习的新型蛋白质结合剂的计算设计
- 批准号:
9887271 - 财政年份:2020
- 资助金额:
$ 35.42万 - 项目类别:
Computational design of novel protein binders based on structure mining and learning from data
基于结构挖掘和数据学习的新型蛋白质结合剂的计算设计
- 批准号:
10541909 - 财政年份:2020
- 资助金额:
$ 35.42万 - 项目类别:
Understanding transmembrane helix interaction on the structural level
在结构水平上理解跨膜螺旋相互作用
- 批准号:
7886793 - 财政年份:2009
- 资助金额:
$ 35.42万 - 项目类别:
Understanding transmembrane helix interaction on the structural level
在结构水平上理解跨膜螺旋相互作用
- 批准号:
7677038 - 财政年份:2009
- 资助金额:
$ 35.42万 - 项目类别:
Project 3: Protein Design for Selective Interference with LPA Signaling in Colon Cancer
项目 3:选择性干扰结肠癌 LPA 信号传导的蛋白质设计
- 批准号:
8813298 - 财政年份:
- 资助金额:
$ 35.42万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Continuing Grant














{{item.name}}会员




