Understanding the role of autophagy-regulated cell death in the escape from replicative crisis
了解自噬调节的细胞死亡在逃避复制危机中的作用
基本信息
- 批准号:9888219
- 负责人:
- 金额:$ 63.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:ApoptosisApoptoticApplications GrantsAutophagocytosisBypassCancerousCell AgingCell Cycle CheckpointCell DeathCell NucleusCell ProliferationCellsDNADNA DamageDataDevelopmentEventFunctional disorderGenomeGenomic InstabilityGenotoxic StressGoalsGrowthHumanImpairmentIndividualLeadLearningMalignant - descriptorMalignant NeoplasmsMitochondriaMolecularNatureOrganellesOrganismPathway interactionsPhasePopulationProcessProliferatingProteinsResistanceRibosomesRoleSignal PathwaySignal TransductionSiteStimulator of Interferon GenesStressTP53 geneTelomere MaintenanceTestingTimeTumor EscapeTumor SuppressionTumor Suppressor ProteinsUp-Regulationbasecancer celldesignexpectationgenome integritygenome-widegenomic aberrationsin vivoinhibition of autophagyinhibitor/antagonistloss of functionmouse modelneoplasticneoplastic cellnovelperoxisomepreventresponsesenescencetelomeretooltumortumorigenesis
项目摘要
Abstract
Tumor cells arise upon escape from two distinct and critical barriers that limit proliferation of human cells,
replicative senescence and crisis. Cells in replicative senescence arrest permanently while continuing to
metabolize, triggered by short telomeres. Senescence entry however, is avoided by impairment of the main cell
cycle checkpoints controlled by the p53 and Rb tumor suppressive pathways. Following senescence bypass and
continued proliferation, cells undergo crisis, which is a phase highlighted by substantial telomere deprotection
and widespread cell death. Crisis is a stringent tumor-suppressive barrier, as it removes the vast majority of cells
that avoid senescence. However, rarely cells overcome this barrier and become neoplastic. The molecular
mechanisms and pathways underlying cell death in crisis and spontaneous crisis evasion are not understood.
Here, it is proposed to investigate the molecular mechanisms underlying the escape from crisis and crisis bypass,
with the expectation that the resulting discoveries will have a strong impact on our understanding of the early
steps in cancer development. The preliminary data presented here suggest a novel concept for replicative crisis
that implicates autophagy as a major regulator of cell death. Autophagy suppression allowed cells to bypass
crisis and continue to proliferate, while accumulating multiple genomic aberrations. This discovery is of profound
significance for understanding how genome instability evolves during the early steps of cancer development.
Furthermore, the finding suggests that autophagy inhibitors might have counterproductive effects and promote
the establishment of neoplastic cells instead of eliminating them. In three specific aims it is proposed to decipher
the exact signaling pathways that lead from dysfunctional telomeres to the activation of autophagy-controlled
cell death (Aim 1), to determine the consequences of telomere-driven autophagy and of autophagy inhibition
during crisis (Aim 2), and to understand the role of autophagy-driven cell death in crisis on tumor development
in vivo (Aim 3). In summary, this grant proposal focuses on the mechanisms underlying cell death during
replicative crisis, the mechanism of how autophagy is activated and regulated in response to replicative crisis,
and how inhibition of autophagy during crisis enables cells with an unstable genome to escape this final barrier
against tumor cell establishment and drive malignancy. We will thereby explore our novel hypothesis, in which
temporary or permanent resistance to autophagic cell death is the initial event required for the emergence of
post-crisis cells and an abrupt rise in genome instability, leading to the establishment of neoplastic cells.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Karlseder其他文献
Jan Karlseder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Karlseder', 18)}}的其他基金
A nucleus-to-mitochondria nucleic acid-sensing pathway prevents bypass of age-associated proliferative boundaries
细胞核到线粒体核酸传感途径可防止绕过与年龄相关的增殖边界
- 批准号:
10587704 - 财政年份:2022
- 资助金额:
$ 63.88万 - 项目类别:
A nucleus-to-mitochondria nucleic acid-sensing pathway prevents bypass of age-associated proliferative boundaries
细胞核到线粒体核酸传感途径可防止绕过与年龄相关的增殖边界
- 批准号:
10709000 - 财政年份:2022
- 资助金额:
$ 63.88万 - 项目类别:
Spontaneous replication fork collapse regulates telomere length homeostasis in wild type yeast
自发复制叉崩溃调节野生型酵母的端粒长度稳态
- 批准号:
10371165 - 财政年份:2021
- 资助金额:
$ 63.88万 - 项目类别:
Spontaneous replication fork collapse regulates telomere length homeostasis in wild type yeast
自发复制叉崩溃调节野生型酵母的端粒长度稳态
- 批准号:
10549328 - 财政年份:2021
- 资助金额:
$ 63.88万 - 项目类别:
Understanding the role of autophagy-regulated cell death in the escape from replicative crisis
了解自噬调节的细胞死亡在逃避复制危机中的作用
- 批准号:
10529309 - 财政年份:2019
- 资助金额:
$ 63.88万 - 项目类别:
Understanding the role of autophagy-regulated cell death in the escape from replicative crisis
了解自噬调节的细胞死亡在逃避复制危机中的作用
- 批准号:
10296665 - 财政年份:2019
- 资助金额:
$ 63.88万 - 项目类别:
Understanding the role of autophagy-regulated cell death in the escape from replicative crisis
了解自噬调节的细胞死亡在逃避复制危机中的作用
- 批准号:
10063861 - 财政年份:2019
- 资助金额:
$ 63.88万 - 项目类别:
Understanding DNA break repair pathway choice regulation by the cNHEJ inhibitor CYREN
了解 cNHEJ 抑制剂 CYREN 的 DNA 断裂修复途径选择调节
- 批准号:
10397557 - 财政年份:2018
- 资助金额:
$ 63.88万 - 项目类别:
Understanding DNA break repair pathway choice regulation by the cNHEJ inhibitor CYREN
了解 cNHEJ 抑制剂 CYREN 的 DNA 断裂修复途径选择调节
- 批准号:
10153737 - 财政年份:2018
- 资助金额:
$ 63.88万 - 项目类别:
The role of histone chaperone Asf1 in Alternative Lengthening of Telomeres
组蛋白伴侣 Asf1 在端粒选择性延长中的作用
- 批准号:
8824891 - 财政年份:2013
- 资助金额:
$ 63.88万 - 项目类别:
相似海外基金
Mechanisms that underlie the life/death decisions in a cell that activated apoptotic caspases
细胞中激活凋亡半胱天冬酶的生/死决策的机制
- 批准号:
10607815 - 财政年份:2023
- 资助金额:
$ 63.88万 - 项目类别:
Nuclear and chromatin aberrations during non-apoptotic cell death in C. elegans and mammals
线虫和哺乳动物非凋亡细胞死亡过程中的核和染色质畸变
- 批准号:
10723868 - 财政年份:2023
- 资助金额:
$ 63.88万 - 项目类别:
Non-apoptotic functions of caspase-3 in neural development
Caspase-3在神经发育中的非凋亡功能
- 批准号:
10862033 - 财政年份:2023
- 资助金额:
$ 63.88万 - 项目类别:
Apoptotic Donor Leukocytes to Promote Kidney Transplant Tolerance
凋亡供体白细胞促进肾移植耐受
- 批准号:
10622209 - 财政年份:2023
- 资助金额:
$ 63.88万 - 项目类别:
Design of apoptotic cell mimetic anti-inflammatory polymers for the treatment of cytokine storm
用于治疗细胞因子风暴的模拟凋亡细胞抗炎聚合物的设计
- 批准号:
22H03963 - 财政年份:2022
- 资助金额:
$ 63.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Identifying the mechanisms behind non-apoptotic functions of mitochondrial matrix-localized MCL-1
确定线粒体基质定位的 MCL-1 非凋亡功能背后的机制
- 批准号:
10537709 - 财政年份:2022
- 资助金额:
$ 63.88万 - 项目类别:
Environmental Carcinogens Induce Minority MOMP to Initiate Carcinogenesis in Lung Cancer and Mesothelioma whileMaintaining Apoptotic Resistance via Mcl-1
环境致癌物诱导少数 MOMP 引发肺癌和间皮瘤的癌变,同时通过 Mcl-1 维持细胞凋亡抵抗
- 批准号:
10356565 - 财政年份:2022
- 资助金额:
$ 63.88万 - 项目类别:
Targeting apoptotic cells to enhance radiotherapy
靶向凋亡细胞以增强放射治疗
- 批准号:
10708827 - 财政年份:2022
- 资助金额:
$ 63.88万 - 项目类别:
Activation of non-apoptotic cell death by the DNA damage response
DNA 损伤反应激活非凋亡细胞死亡
- 批准号:
10388929 - 财政年份:2022
- 资助金额:
$ 63.88万 - 项目类别:
Role of natural immunity to self apoptotic exosomes in maintaining immune homeostasis
对自凋亡外泌体的自然免疫在维持免疫稳态中的作用
- 批准号:
RGPIN-2021-03004 - 财政年份:2022
- 资助金额:
$ 63.88万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




