Thyroid Hormone and Neuronal Protection
甲状腺激素和神经元保护
基本信息
- 批准号:9888202
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAftercareApoptosisAreaBrainBrain EdemaBrain InjuriesBrain imagingBrain regionCell Culture TechniquesCell DeathCell LineClinicalClinical ResearchDNA MethylationDNA Methylation RegulationDataDevelopmentDifferentiation and GrowthDoseEdemaEnzymesEpigenetic ProcessGene ExpressionGene Expression ProfileGene Expression RegulationGenesGoalsGrantGrowthHigh PrevalenceHourHypoxiaImageIn VitroInflammationInjuryIodide PeroxidaseLeadLesionMediatingMetabolicMetabolismModelingModificationMorbidity - disease rateMusNatural regenerationNerve RegenerationNeurogliaNeuronal DifferentiationNeuronal HypoxiaNeuronal InjuryNeuronsNuclear ReceptorsPathogenesisPathway interactionsPopulationPreparationRecoveryRegimenRegulationReporterRodentRodent ModelSamplingScreening procedureSerumStudy of serumTBI treatmentTherapeuticThyroid HormonesThyroid hormone receptor alphaThyroxineTraumatic Brain InjuryTreatment ProtocolsTriiodothyronineVeteransWaterbehavioral studybrain cellepigenetic regulationhistone methylationhistone modificationhormone therapyin vitro Modelin vivomortalitynerve injurynerve stem cellneuron lossprotective effectrelating to nervous systemresponseresponse to injurytissue injurytreatment strategyuptake
项目摘要
Thyroid hormone (TH) is essential for normal brain development and may also promote recovery and
neuronal regeneration after brain injury. TH acts predominantly through the nuclear receptors, TH
receptor alpha (THRA) and beta (THRB). Additional factors that impact TH action in the brain include
metabolism, activation of thyroxine (T4) to triiodothyronine (T3) by the enzyme 5′-deiodinase Type 2
(Dio2), inactivation by the enzyme 5-deiodinase Type 3 (Dio3) to reverse T3 (rT3), which occurs in glial
cells, and uptake by the Mct8 transporter in neurons. Traumatic brain injury (TBI) is associated with
inflammation, metabolic alterations and neuronal death. In clinical studies, serum levels of T4 and T3,
as well as TH levels in the brain, are reduced. We have utilized rodent models of TBI to demonstrate
that treatment with T4, 1 hour after injury, is protective, reduces edema, and promotes neuronal
recovery. We have identified similar protective effects of TH in an in vitro model of neuronal injury from
hypoxia. We will study both the mechanism of TH protection from neuronal injury as well as optimize
protective treatment strategies with TH, utilizing in vivo rodent models of TBI. We have preliminary data
identifying genes whose expression is impacted by hypoxic neuronal injury and those that are
normalized by TH treatment. We will characterize these genes to identify specific pathways influenced
by TH treatment. Hypoxic injury increases histone methylation in neurons and this is reduced by T3
treatment. We believe that this is an important mechanism for T3 protection after injury. We will also
identify T3-stimulated pathways that activate neural regeneration and anti-apoptosis in neurons after
hypoxic injury. We will utilize in vivo rodent models of TBI to identify the actions of TH in protection and
promotion of recovery after brain injury and determine the optimal thyroid hormone treatment after TBI.
We will use a mouse with global expression of a T3-reporter to determine specific brain regions with
reduced T3 action after injury, as well as assess the response to systemic TH treatment after injury.
We will also investigate the mechanism of TH treatment reduction in brain edema by studying the
regulation of water transport. We will determine the optimal thyroid hormone preparation, dose and
treatment schedule to promote brain recovery and neural regeneration in rodent models of TBI. The
response to TH therapy will include assessment of the brain lesion by imaging, brain region-specific
patterns of gene expression and behavioral studies. TH reduction in brain edema and cell death, and
promotion of neuronal regeneration, should provide a beneficial effect after brain injury. These studies
should provide guidance for clinical strategies to use TH to reduce the impact of brain injury and
promote recovery.
!
甲状腺激素(TH)对正常的大脑发育是必不可少的,也可能促进恢复和
脑损伤后神经元再生。TH主要通过核受体发挥作用,
受体α(THRA)和β(THRB)。影响大脑活动的其他因素包括
甲状腺激素(T4)在5‘-脱碘酶2型作用下的代谢、活化为三碘甲状腺原氨酸(T3)
(Dio2),由5-脱碘酶3型(Dio3)失活以逆转T3(Rt3),这发生在神经胶质细胞中
细胞,以及Mct8转运蛋白在神经元中的摄取。创伤性脑损伤与
炎症、代谢改变和神经元死亡。在临床研究中,血清T4和T3水平,
以及大脑中的TH水平都会降低。我们已经利用脑外伤的啮齿动物模型来演示
在损伤后1小时使用T4治疗具有保护作用,减轻水肿,并促进神经元
恢复。我们已经在体外神经元损伤模型中发现了TH的类似保护作用。
缺氧。我们将研究TH对神经元损伤的保护机制以及优化
TH的保护性治疗策略,利用脑外伤的活体啮齿动物模型。我们有初步数据
确定其表达受缺氧性神经元损伤影响的基因以及
经TH治疗后正常化。我们将确定这些基因的特征,以确定受影响的特定途径
通过这样的治疗。低氧损伤增加神经元组蛋白甲基化,这种甲基化被T3降低
治疗。我们认为这是损伤后保护T3的重要机制。我们还将
识别T3刺激的激活神经再生和抗神经元凋亡的通路
缺氧性损伤。我们将利用在体脑外伤的啮齿动物模型来确定TH在保护和保护动物体内的作用
促进脑损伤后的康复,并确定脑损伤后甲状腺激素的最佳治疗方案。
我们将使用一只全球表达T3报告的小鼠来确定特定的大脑区域
损伤后T3活性降低,以及评估损伤后全身TH治疗的反应。
我们还将通过研究TH治疗脑水肿的机制来探讨TH治疗脑水肿的机制。
对水运的监管。我们将确定最佳的甲状腺激素制剂、剂量和
促进脑损伤啮齿动物模型脑功能恢复和神经再生的治疗方案。这个
对TH治疗的反应将包括通过成像对大脑损伤进行评估,具体到大脑区域
基因表达模式和行为研究。减少脑水肿和细胞死亡,并
促进神经元再生,应对脑损伤后起到有益的作用。这些研究
应为临床策略提供指导,使用TH来减少脑损伤和
促进经济复苏。
好了!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY A BRENT其他文献
GREGORY A BRENT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY A BRENT', 18)}}的其他基金
Thyroid Hormone and Retinoic Acid Regulation of Gene Expression
甲状腺激素和视黄酸对基因表达的调节
- 批准号:
8633738 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Thyroid Hormone and Retinoic Acid Regulation of Gene Expression
甲状腺激素和视黄酸对基因表达的调节
- 批准号:
8811004 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Thyroid Hormone and Retinoic Acid Regulation of Gene Expression
甲状腺激素和视黄酸对基因表达的调节
- 批准号:
8974308 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
-- - 项目类别:














{{item.name}}会员




