(PQ3) A functional genomic approach to identification and interpretation of germline-tumor genetic interactions
(PQ3) 识别和解释种系-肿瘤遗传相互作用的功能基因组方法
基本信息
- 批准号:9516467
- 负责人:
- 金额:$ 68.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-08 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsCRISPR interferenceCancer EtiologyCancer InterventionCancer PatientCell LineCell ProliferationChromatinClinicalClinical DataClinical assessmentsComputing MethodologiesDataData AnalysesData CollectionData SetDatabasesDevelopmentDisciplineDistalDrug TargetingEnrollmentEnsureEpidemiologistEvaluationEventEvolutionGene MutationGenesGeneticGenetic TranscriptionGenetic VariationGenomeGenomic approachGenomicsGenotypeGoalsHumanImmuneIndividualInheritedInterventionKnowledgeLeadLifeMalignant NeoplasmsMediationMedicalMedical RecordsMedical ResearchMethodsMethylationModelingMutationNormal tissue morphologyOutcomePatient riskPatientsPhenotypePopulationRNA SplicingRecurrenceRegulator GenesRegulatory PathwayResearchResearch PersonnelRiskRisk AssessmentRisk FactorsSavingsScientistSoftware ToolsSomatic MutationStatistical MethodsThe Cancer Genome AtlasTissuesTranscriptTreatment outcomeTumor TissueUntranslated RNAValidationVariantWorkactionable mutationanticancer researchcancer geneticscancer riskcase controlclinical phenotypeclinically relevantcohortcomputerized toolsempoweredexomefollow-upfunctional genomicsgenetic risk factorgenome wide association studygenome-widehigh throughput screeningimprovedinnovationinsightnovelnovel drug classprecision medicineprogramsresearch studyresponserisk varianttranscriptome sequencingtreatment responsetumortumor growthtumor progression
项目摘要
PROJECT SUMMARY/ABSTRACT
Studies of germline genetic variation in cancer cases and controls as well as studies of somatic mutation have
transformed our understanding of cancer etiology and lead to the development of life saving cancer
interventions. However, even though tumor progression, evolution, and treatment response are influenced by
both somatic and germline variation, these data have largely been examined in isolation. In this work, we
propose to integrate extensive data collection, novel statistical methods, and cutting-edge functional
validation to discover and characterize somatic-germline interactions in a pan-cancer study. Results
from our work will significantly benefit both cancer researcher and multiple medical research discipline more
broadly. Within the cancer genetics field, identifying somatic-germline interactions will help (i) identify new
classes of drugs targets causally upstream of those identified through somatic driver mutations, (ii) precisely
treat patients by selecting interventions the basis of germline and somatic genetics as well as tumor RNA-
sequencing, (iii) improve risk profiling, especially for tumor recurrence and outcomes, and (iv) develop
hypotheses of the germline risk variants mechanism, especially for non-coding variants.
To accomplish these goals, we will leverage tumor sequencing from the DFCI Profile Project together with
recent innovations in variant imputation to assemble the largest (N>25,000) pan-cancer germline-somatic
cohort to date. We will develop novel statistical and computational methods to maximize the value of these
data. Because over 90% of germline genetic variation associated with cancer risk and outcomes is in non-
coding regions of the genome we especially focus on integration of functional genomic sequencing from both
tumor and normal tissues. Our methods will be capable of modelling proximal germline-somatic interactions as
well as distal effects of germline variation on trans and global somatic changes. Furthermore, by focusing
largely on RNA-sequencing we investigate a gene-centric model that provides specific hypotheses for
mechanism that are readily validated via our experimental follow-up of non-coding variation that is
otherwise difficult to interpret.
项目概要/摘要
癌症病例和对照中种系遗传变异的研究以及体细胞突变的研究已经
改变了我们对癌症病因学的理解并导致了拯救生命的癌症的发展
干预措施。然而,尽管肿瘤的进展、进化和治疗反应受到以下因素的影响:
无论是体细胞变异还是种系变异,这些数据在很大程度上都是单独检查的。在这项工作中,我们
建议整合广泛的数据收集、新颖的统计方法和尖端功能
验证在泛癌研究中发现和表征体细胞-种系相互作用。结果
我们的工作将使癌症研究人员和多个医学研究学科受益更多
广泛地说。在癌症遗传学领域,识别体细胞-种系相互作用将有助于(i)识别新的
各类药物的靶点是通过体细胞驱动突变确定的药物的上游,(ii) 精确地
通过选择基于种系和体细胞遗传学以及肿瘤 RNA 的干预措施来治疗患者
测序,(iii) 改善风险分析,特别是肿瘤复发和结果,以及 (iv) 开发
种系风险变异机制的假设,尤其是非编码变异。
为了实现这些目标,我们将利用 DFCI Profile Project 的肿瘤测序以及
最近在变异插补方面的创新,组装了最大的(N>25,000)泛癌种系体细胞
迄今为止的队列。我们将开发新颖的统计和计算方法,以最大限度地发挥这些价值
数据。因为与癌症风险和结果相关的种系遗传变异 90% 以上是非
我们特别关注基因组编码区域的功能基因组测序的整合
肿瘤和正常组织。我们的方法将能够模拟近端种系-体细胞相互作用:
以及种系变异对反式和整体体细胞变化的远端影响。此外,通过聚焦
主要基于 RNA 测序,我们研究了一个以基因为中心的模型,该模型为
通过我们对非编码变异的实验跟踪很容易验证这一机制
否则很难解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER GUSEV其他文献
ALEXANDER GUSEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER GUSEV', 18)}}的其他基金
Integrative modelling of single-cell data to elucidate the genetic architecture of complex disease
单细胞数据的综合建模以阐明复杂疾病的遗传结构
- 批准号:
10889304 - 财政年份:2023
- 资助金额:
$ 68.65万 - 项目类别:
Characterizing non-coding somatic and germline variant interactions in ovarian cancer
卵巢癌中非编码体细胞和种系变异相互作用的特征
- 批准号:
10405651 - 财政年份:2020
- 资助金额:
$ 68.65万 - 项目类别:
(PQ3) A functional genomic approach to identification and interpretation of germline-tumor genetic interactions
(PQ3) 识别和解释种系-肿瘤遗传相互作用的功能基因组方法
- 批准号:
10402412 - 财政年份:2018
- 资助金额:
$ 68.65万 - 项目类别:
(PQ3) A functional genomic approach to identification and interpretation of germline-tumor genetic interactions
(PQ3) 识别和解释种系-肿瘤遗传相互作用的功能基因组方法
- 批准号:
10160851 - 财政年份:2018
- 资助金额:
$ 68.65万 - 项目类别:
Fine-mapping heritability at known disease loci with correlated markers
使用相关标记精细绘制已知疾病位点的遗传力
- 批准号:
8525990 - 财政年份:2013
- 资助金额:
$ 68.65万 - 项目类别:
Fine-mapping heritability at known disease loci with correlated markers
使用相关标记精细绘制已知疾病位点的遗传力
- 批准号:
8651765 - 财政年份:2013
- 资助金额:
$ 68.65万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 68.65万 - 项目类别:
Continuing Grant