Integrative modelling of single-cell data to elucidate the genetic architecture of complex disease
单细胞数据的综合建模以阐明复杂疾病的遗传结构
基本信息
- 批准号:10889304
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AllelesBenchmarkingBiologicalBiologyCellsCellular biologyChromatinCollaborationsCollectionCommunitiesComplexComputer softwareDataData SetDiseaseEpigenetic ProcessGene ExpressionGenesGenetic TranscriptionGenomeHeritabilityImmuneIndividualMapsMeasurementModalityModelingMolecularMultiomic DataNaturePhenotypePopulationPrincipal Component AnalysisProcessPublicationsPublishingQuantitative Trait LociRegulatory ElementResearchResolutionStatistical ModelsStudy modelsTissuesTranscription ProcessUntranslated RNAVariantWorkcausal variantcell typedata integrationeffective interventionepigenomeepigenomicsgenetic architecturegenome wide association studyimprovedmultiple omicsneuropsychiatrynovelnovel strategiessingle cell sequencingsingle-cell RNA sequencingtooltraittranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Leveraging Genome Wide Association Studies (GWAS) to understand disease has proven challenging, as the
underlying biological mechanisms are often poorly captured by bulk tissues. Recent advances in single-cell
sequencing have led to a torrent of data across multiple modalities, contexts, and individuals, which provide an
unprecedented opportunity to understand disease biology at high resolution. We hypothesize that the fine-
scale cellular contexts captured by single-cell data will be effective at explaining disease heritability and fine-
mapping disease mechanisms. However, current approaches to integrate single-cell data with GWAS largely
rely on off-the-shelf approaches developed for bulk sequencing, which obscure the rich phenotypic diversity
present in individual cells within and across canonical cell types. The sparse and highly variable nature of
single-cell data has additionally posed challenges for robustly identifying single-cell quantitative trait loci (QTL).
Single-cell data continues to increase in size and complexity, emphasizing the need for scalable integrative
modeling. Here, we propose a 5 year research plan to develop novel approaches for integrating single-cell
data with GWAS by modeling complex cellular phenotypes not captured by existing bulk approaches. Our
proposal will identify novel disease-relevant cell states; leverage multiple single-cell modalities to fine-map
disease variants and their target genes; and discover novel single-cell QTLs associated with disease. Our
specific aims are: Aim 1: Leveraging single-cell epigenetic data to identify heritable components of disease;
Aim 2: Leveraging single-cell data to fine-map disease variants and their mechanisms; Aim 3: Defining the
regulatory effects of disease variants using population-scale scRNA-seq. While our proposed approaches are
broadly applicable to common diseases, we will benchmark them on immune-related traits and
neuropsychiatric traits which we have studied extensively with bulk datasets in published work and where we
have now aggregated a large collection of relevant single-cell datasets. Our collaboration has multiple
strengths: our focus on functional data integration across multiple single-cell modalities; our broad statistical
and computational expertise; and our extensive, data-driven publication record on common disease.
项目摘要/摘要
利用全基因组关联研究(GWAS)来了解疾病已被证明具有挑战性,因为
潜在的生物学机制通常很难被大块组织捕获。单细胞研究进展
测序导致了跨越多种模式,背景和个人的数据洪流,这提供了一个
前所未有的机会,以高分辨率了解疾病生物学。我们假设罚款-
由单细胞数据捕获的规模细胞背景将有效地解释疾病遗传性和精细化。
映射疾病机制。然而,目前将单细胞数据与GWAS集成的方法主要是
依赖于为批量测序开发的现成方法,这掩盖了丰富的表型多样性。
存在于典型细胞类型内和跨典型细胞类型的单个细胞中。稀疏和高度可变的性质,
单细胞数据还对稳健地鉴定单细胞数量性状基因座(QTL)提出了挑战。
单单元数据的规模和复杂性不断增加,强调了可扩展的集成
建模在这里,我们提出了一个5年的研究计划,以开发新的方法,整合单细胞
通过对现有批量方法无法捕获的复杂细胞表型进行建模,获得GWAS数据。我们
该提案将确定新的疾病相关细胞状态;利用多种单细胞模式来精细映射
疾病变体及其靶基因;并发现与疾病相关的新的单细胞QTL。我们
具体目标是:目标1:利用单细胞表观遗传数据来确定疾病的遗传成分;
目标2:利用单细胞数据精细绘制疾病变体及其机制;目标3:定义
使用群体规模scRNA-seq的疾病变体的调节作用。虽然我们提出的方法是
广泛适用于常见疾病,我们将以免疫相关特征为基准,
神经精神特征,我们已经广泛研究了大量数据集在出版的工作,我们在哪里,
现在已经聚集了大量相关的单细胞数据集。我们的合作有多个
优势:我们专注于跨多个单细胞模式的功能数据集成;我们广泛的统计分析
和计算专业知识;以及我们在常见疾病方面广泛的、数据驱动的出版记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER GUSEV其他文献
ALEXANDER GUSEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER GUSEV', 18)}}的其他基金
Characterizing non-coding somatic and germline variant interactions in ovarian cancer
卵巢癌中非编码体细胞和种系变异相互作用的特征
- 批准号:
10405651 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
(PQ3) A functional genomic approach to identification and interpretation of germline-tumor genetic interactions
(PQ3) 识别和解释种系-肿瘤遗传相互作用的功能基因组方法
- 批准号:
9516467 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
(PQ3) A functional genomic approach to identification and interpretation of germline-tumor genetic interactions
(PQ3) 识别和解释种系-肿瘤遗传相互作用的功能基因组方法
- 批准号:
10402412 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
(PQ3) A functional genomic approach to identification and interpretation of germline-tumor genetic interactions
(PQ3) 识别和解释种系-肿瘤遗传相互作用的功能基因组方法
- 批准号:
10160851 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Fine-mapping heritability at known disease loci with correlated markers
使用相关标记精细绘制已知疾病位点的遗传力
- 批准号:
8525990 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Fine-mapping heritability at known disease loci with correlated markers
使用相关标记精细绘制已知疾病位点的遗传力
- 批准号:
8651765 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant