An Imputation-Consistency Algorithm for Biomedical Complex Data Analysis

生物医学复杂数据分析的插补一致性算法

基本信息

  • 批准号:
    9658022
  • 负责人:
  • 金额:
    $ 30.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary The dramatic improvement in data collection and acquisition technologies in the past decades has enabled sci- entists to collect vast amounts of health-related data from biomedical studies. If analyzed properly, these data will expand our knowledge for testing new hypotheses about disease management from diagnosis to prevention to per- sonalized treatment. However, the biomedical data can be rather complex, how to analyze them has posed many challenges on the existing methods. This proposal attempts to address three fundamental challenges: (i) Missing data are ubiquitous in biomedical research, how to make a sufficient use of biomedical complex data in presence of missing values? (ii) With the growing data size, typically comes a growing complexity of the patterns in the data and of the models needed to account for the patterns. What is the general recipe for estimating parameters of complex models? (iii) Biomarker identi cation from high-throughput omics data has been one of major focuses in cancer research. Yet despite intense effort, the number of biomarkers approved by FDA each year for clinical use is still in single digits. An important factor contributing to this failure is the lack of appropriate statistical methods for analyzing such heterogeneous and high-dimensional data. Toward a sufficient use of biomedical complex data, this project proposes an imputation-consistency algorithm as a general algorithm for high-dimensional missing data problems. Then the algorithm is extended to address other two challenges under the principles of conditioning and consistency; in particular, this project proposes some highly efficient and effective statistical algorithms that address the heterogeneity and high-dimensionality issues encountered in biomarker identi cations and eQTL analysis. The proposed algorithms are applied to (i) select anticancer drug sensitive genes with the CCLE and SANGER data, (ii) identify prognostic mRNA biomarkers for multiple types of cancers using the TCGA data, (iii) conduct eQTL analysis for multiple types of cancers using the TCGA data, and (iv) identify informative circulating biomarkers for type 1 diabetes. The proposed methods are highly efficient and general and can be applied to other types of disease as well. Statistically, this project is to develop some general, effective, and highly efficient algorithms for complex data analysis; biomedically, this project will signi cantly improve accuracy of biomarker identi cation from omics data, which advances people's understanding of molecular mechanism and development of precision medicine. 1
项目摘要 在过去的几十年里,数据收集和获取技术的巨大进步使科学研究成为可能。 从生物医学研究中收集大量与健康相关的数据。如果分析得当,这些数据将 扩大我们的知识,以测试新的假设,从诊断到预防疾病的管理,以每, 超声波治疗然而,生物医学数据可以是相当复杂的,如何分析它们提出了许多 对现有方法的挑战。本提案试图解决三个基本挑战: 数据在生物医学研究中无处不在,如何充分利用现有的生物医学复杂数据, 缺失值?(ii)随着数据大小的增长, 数据和模型需要考虑的模式。什么是一般配方估计参数的 复杂的模型?(iii)从高通量组学数据中识别生物标志物一直是生物学领域的主要焦点之一。 癌症研究。然而,尽管有大量的研究,FDA每年批准用于临床的生物标志物的数量仍然很少。 还是个位数造成这种失败的一个重要因素是缺乏适当的统计方法 用于分析这样的异构和高维数据。为了充分利用生物医学复杂数据, 本计画提出一种估算一致性演算法,作为高维缺失资料的一般演算法 问题然后,在条件反射原理下,将该算法扩展到解决其他两个挑战, 一致性;特别是,该项目提出了一些高度有效的统计算法, 生物标志物鉴定和eQTL分析中遇到的异质性和高维性问题。的 所提出的算法被应用于(i)利用CCLE和桑格数据选择抗癌药物敏感基因, (ii)使用TCGA数据鉴定多种类型癌症的预后mRNA生物标志物,(iii)进行eQTL 使用TCGA数据分析多种类型的癌症,和(iv)鉴定用于以下的信息性循环生物标志物: 1型糖尿病所提出的方法具有较高的效率和通用性,可应用于其他类型的疾病 也从统计学的角度来看,本项目的目标是开发一些通用的、有效的、高效率的算法, 数据分析;生物医学上,该项目将显著提高组学生物标志物鉴定的准确性 数据,推进了人们对分子机制的理解和精准医学的发展。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FAMING LIANG其他文献

FAMING LIANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FAMING LIANG', 18)}}的其他基金

Stochastic Deep Learning for Electronic Health Records: Localizing Learning with Massive and Fragmented Data
电子健康记录的随机深度学习:利用海量碎片数据进行本地化学习
  • 批准号:
    10793778
  • 财政年份:
    2023
  • 资助金额:
    $ 30.33万
  • 项目类别:
Equivalent Partial Correlation Methods for Integrative Genetic Network Analysis
综合遗传网络分析的等效偏相关方法
  • 批准号:
    9133431
  • 财政年份:
    2015
  • 资助金额:
    $ 30.33万
  • 项目类别:
Equivalent Partial Correlation Methods for Integrative Genetic Network Analysis
综合遗传网络分析的等效偏相关方法
  • 批准号:
    9696111
  • 财政年份:
    2015
  • 资助金额:
    $ 30.33万
  • 项目类别:
Equivalent Partial Correlation Methods for Integrative Genetic Network Analysis
综合遗传网络分析的等效偏相关方法
  • 批准号:
    9273537
  • 财政年份:
    2015
  • 资助金额:
    $ 30.33万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 30.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了