Equivalent Partial Correlation Methods for Integrative Genetic Network Analysis

综合遗传网络分析的等效偏相关方法

基本信息

  • 批准号:
    9696111
  • 负责人:
  • 金额:
    $ 29.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The emergence of high-throughput technologies has made it feasible to measure the activities of thousands of genes simultaneously, which provides scientists a major opportunity to infer global gene regulatory networks (GRNs). Accurate inference of GRNs is very important, which allows people to gain a systematic understanding of the molecular mechanism, to shed light on the mechanism of diseases that occur when cellular processed are dysregulated, and furthermore to identify potential therapeutic targets for diseases. Given the high dimensionality and high complexity of high-throughput data, inference of global GRNs largely relies on the advance of computational methods. However, the current computational methods for inference of global GRNs are either inaccurate or computationally infeasible. How to infer global GRNs has put a great challenge on the current statistical methodology. The investigators propose an equivalent measure of partial correlation coefficients, and based on which develop an innovative computational framework for inference of global GRNs. The new measure of partial correlation coefficients can be evaluated with a reduced conditional set and thus feasible for high dimensional problems. Under the new framework, the investigators develop a series of algorithms which are able to provide a comprehensive inference for global GRNs by integrating various types of high-throughput molecular profiling data, e.g., mRNA expression, copy number variation, methylation, microRNA, and protein expression, and adjusting with various clinical covariates, e.g., age, gender, and disease stage. The proposed algorithms are applied to infer the global GRNs for various types of cancer with a special focus on lung cancer, while they are applicable to all other types of diseases. Statistically, this project proposes an innovative framework for inference of global GRNs, and the algorithms developed under which are not only computationally efficient, but also very flexible in data integration, covariate adjustment, prior knowledge integration, and network comparison. Biomedically, this is the first study to integrate such comprehensive and complementary information using rigorous statistical methods to study the global GRNs for various types of cancer.
 描述(由申请人提供):高通量技术的出现使得同时测量数千个基因的活性成为可能,这为科学家推断全球基因调控网络(GRNs)提供了重要机会。GRNs的准确推断对于系统地了解其分子机制、阐明细胞加工过程失调导致疾病的发生机制以及确定潜在的疾病治疗靶点具有重要意义。由于高吞吐量数据的高维性和高复杂性,全局GRNs的推理在很大程度上依赖于计算方法的进步。 然而,目前的计算方法推断的全球GRNs要么是不准确的或计算上不可行的。如何推断全球GRN对现有的统计方法提出了很大的挑战。 研究人员提出了一个等效的偏相关系数的测量,并在此基础上开发了一个创新的计算框架,推断全球GRNs。这种新的偏相关系数测度可以用一个简化的条件集来计算,因此对于高维问题是可行的。在新的框架下,研究人员开发了一系列算法,这些算法能够通过整合各种类型的高通量分子分析数据,例如,mRNA表达、拷贝数变异、甲基化、microRNA和蛋白质表达,并用各种临床协变量进行调整,例如,年龄、性别和疾病阶段。所提出的算法被应用于推断各种类型的癌症的全局GRNs,特别关注肺癌,而它们适用于所有其他癌症。 疾病的种类。在统计上,该项目提出了一个创新的框架来推断全局GRNs,在此框架下开发的算法不仅计算效率高,而且在数据集成,协变量调整,先验知识集成和网络比较方面非常灵活。在生物医学上,这是第一项使用严格的统计方法整合此类全面和互补信息的研究,以研究各种类型癌症的全球GRNs。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning gene regulatory networks from next generation sequencing data.
  • DOI:
    10.1111/biom.12682
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Jia B;Xu S;Xiao G;Lamba V;Liang F
  • 通讯作者:
    Liang F
A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data.
STAT5A and STAT5B have opposite correlations with drug response gene expression.
Integrative Analysis of Gene Networks and Their Application to Lung Adenocarcinoma Studies.
基因网络的综合分析及其在肺腺癌研究中的应用。
  • DOI:
    10.1177/1176935117690778
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Lee,Sangin;Liang,Faming;Cai,Ling;Xiao,Guanghua
  • 通讯作者:
    Xiao,Guanghua
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FAMING LIANG其他文献

FAMING LIANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FAMING LIANG', 18)}}的其他基金

Stochastic Deep Learning for Electronic Health Records: Localizing Learning with Massive and Fragmented Data
电子健康记录的随机深度学习:利用海量碎片数据进行本地化学习
  • 批准号:
    10793778
  • 财政年份:
    2023
  • 资助金额:
    $ 29.79万
  • 项目类别:
An Imputation-Consistency Algorithm for Biomedical Complex Data Analysis
生物医学复杂数据分析的插补一致性算法
  • 批准号:
    9658022
  • 财政年份:
    2018
  • 资助金额:
    $ 29.79万
  • 项目类别:
Equivalent Partial Correlation Methods for Integrative Genetic Network Analysis
综合遗传网络分析的等效偏相关方法
  • 批准号:
    9133431
  • 财政年份:
    2015
  • 资助金额:
    $ 29.79万
  • 项目类别:
Equivalent Partial Correlation Methods for Integrative Genetic Network Analysis
综合遗传网络分析的等效偏相关方法
  • 批准号:
    9273537
  • 财政年份:
    2015
  • 资助金额:
    $ 29.79万
  • 项目类别:

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Partial Support of the Condensed Matter and Materials Research Committee
凝聚态与材料研究委员会的部分支持
  • 批准号:
    2337353
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    ARC Future Fellowships
CAREER: Real-time control of elementary catalytic steps: Controlling total vs partial electrocatalytic oxidation of alkanes and olefins
职业:实时控制基本催化步骤:控制烷烃和烯烃的全部与部分电催化氧化
  • 批准号:
    2338627
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Continuing Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了