Mechanisms of activation, signaling and trafficking of adhesion GPCRs GPR64 and GPR56

粘附 GPCR GPR64 和 GPR56 的激活、信号传导和运输机制

基本信息

  • 批准号:
    9760422
  • 负责人:
  • 金额:
    $ 32.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary G protein-coupled receptors (GPCRs) transmit the extracellular stimuli into intracellular signals, by which they can orchestrate a myriad of cellular and physiological processes. GPCRs form the largest superfamily of surface receptors and their aberrant function causes diseases such as cancer, asthma, hypertension, endocrine and musculoskeletal dysfunction. Adhesion GPCRs (aGPCRs) are the second largest but the least studied family of GPCRs and have recently gained much interest due to their direct or indirect involvement in various diseases. In order to target aGPCRs therapeutically, we need to understand the mechanisms by which they are activated and the intracellular signaling cascades that they initiate. aGPCRs have an unusually long N-terminal fragment (NTF) that is cleaved during their biosynthesis but stays bound to the rest of the receptor non-covalently. The processes taking place after binding of extracellular ligands to this NTF can vary for different aGPCRs. While such interactions can stabilize a certain conformation and trigger or inhibit signaling in some aGPCRs, it can also dissociate the NTF and unmask a small tethered peptide (stalk) on the very N-terminus of the remaining receptor. We showed that the NTF of ADGRG2/GPR64, an orphan aGPCR, functions as an inhibitor and its deletion results in a receptor that is constitutively activated by its stalk. We provided compelling evidence that GPR64 regulates secretion of parathyroid hormone, a master regulator of bone metabolism by human-derived parathyroid adenoma cells. Via molecular and cellular assays, we have demonstrated that NTF-deficient GPR64 elevates cAMP levels by activating adenylyl cyclase, interacts with -arrestins, becomes ubiquitinated and internalizes via unknown mechanisms. A mutant that lacks this tethered peptide and NTF (stalk-less) is devoid of constitutive activity but responds to the exogenously added synthetic tethered peptide and interacts with - arrestins. The underlying mechanism for recruitment of -arrestins by stalk-less GPR64 in the absence of G- protein signaling is not clear. These published and preliminary data combined with our current knowledge of another closely related aGPCR, ADGRG1/GPR56 lead us to hypothesize that specific structural elements control signaling, endocytic pathways and physiological functions of these aGPCRs. To shed light on the pharmacological and physiological characteristics of these receptors, we will: (1) Determine the impact of NTF and its cleavage on the binding of tethered peptides and trafficking of GPR64 and GPR56; (2) Identify the structural motifs and intracellular regulators that control G-protein and -arrestin signaling downstream of GPR64 and GPR56 and (3) Determine the effects of GPR64 signaling and its NTF and stalk on bone development in Zebrafish, a low vertebrate model organism. These novel translational studies will greatly bolster our understanding of aGPCR pharmacology and lay the foundation for rational design of therapeutics for diseases caused by aGPCRs.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nariman Balenga其他文献

Nariman Balenga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了