Bioprinting A Physiologically Aligned, Thick Cardiac Tissue for Regenerative Medicine
生物打印生理排列的厚心肌组织用于再生医学
基本信息
- 批准号:9760107
- 负责人:
- 金额:$ 3.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAlternative TherapiesAmericanAnimal ModelArchitectureAutologousBlood VesselsCalciumCardiacCardiac MyocytesCell SurvivalCell TransplantationCell TransplantsCellsCessation of lifeChronicCicatrixCollagenCollectionComplexContractsCustomCytoskeletonDimensionsDiseaseEFRACEngineeringExtracellular MatrixFellowshipFiberFibrinFibroblastsFilamentFutureGelatinGoalsHarvestHeartHeart failureHumanImageIndividualInjectionsInkLeftLengthMacaca mulattaMeasuresMuscleMyocardialMyocardial InfarctionMyocardiumNatural regenerationOperative Surgical ProceduresOrganParacrine CommunicationPatientsPeripheralPhysiologicalPluripotent Stem CellsPositioning AttributePrintingPublicationsPumpRegenerative MedicineRouteSpeedStainsStem cell transplantStem cellsStructureSuspensionsTechniquesTestingTherapeuticThickTimeTissue EngineeringTissuesTorsionTracerTransducersUnited StatesUnited States National Institutes of HealthVascular blood supplyVascularizationVentricularbasebioprintingexperienceheart cellheart functionhuman pluripotent stem cellimprovedin vitro Modelin vivoinduced pluripotent stem cellnonhuman primateparticlepersonalized approachpersonalized medicinepreclinical trialpreventregenerativestem cell therapysuccesssynergismtranslational model
项目摘要
PROJECT SUMMARY
Each year 750,000 American experience a heart attack, many of whom progress to heart failure. Heart failure,
which accounts for 10% of annual deaths in the United States, is characterized by insufficient pumping
that restricts the blood supply to peripheral organs. Current treatments cannot mitigate this decline as they
do not address the fundamental problem of cell loss. Stem cell derived cardiomyocytes represent an
unlimited, personalized therapy with demonstrated potential to regenerate this contractile function.
Recently, the transplantation of stem cell derived cardiomyocytes restored heart function in rhesus
monkeys with surgically induced heart attacks. The dramatic improvement in this highly translational model is
attributed at least in part to the contractile force generated by the transplanted cells. Despite this improvement
in function, only ~5% of cells survived after 4 weeks. Tissue engineering represents one approach to
improve the re-muscularization strategy by replicating the cellular and extracellular matrix composition of the
heart.
In the heart, cells are oriented in a double helical, three-dimensional architecture. This orientation generates
twist akin to wringing a wet rag. This twist helps scale a cardiomyocyte’s 15% shortening and 8% thickening to
a 65% ejection fraction. Towards generating a personalized therapy capable of adapting to the size and position
of an individual’s heart attack, we aim to recapitulate the architecture and torsional function of myocardium. The
central hypothesis of this proposal are: 1) replicating the physiological twist of myocardium is necessary for
cardiac re-muscularization, and 2) 3D bioprinting aligned cardiac sheets with physiologically relative changes in
orientation will generate twist. Importantly, this approach is complementary to previously developed, 3D printed
vascularization strategies and enables a scalable and tailorable approach. Overall, this project aims to generate
a more physiological tissue that can be used to study physiological indicators of contractile function, which will
inform in vivo studies that aim to re-muscularize the heart. In addition, such tissue may help elucidate disease
mechanisms previously unidentifiable with simpler in vitro models.
Aim 1: Generate a printable bioink composed of aligned, anisotropic cardiac μtissues.
Aim 2: 3D bioprint μtissue-laden inks into uniaxially aligned cardiac tissue sheets.
Aim 3: Determine how relative alignment between 3D bioprinted layers impacts parameters of twist.
项目摘要
每年有75万美国人经历心脏病发作,其中许多人发展为心力衰竭。心脏衰竭,
占美国每年死亡人数的10%,其特点是抽水不足
限制了外周器官的血液供应目前的治疗方法无法缓解这种下降,因为它们
不能解决细胞丢失的根本问题。干细胞衍生的心肌细胞代表了
无限的,个性化的治疗,具有再生这种收缩功能的潜力。
近年来,干细胞衍生的心肌细胞移植恢复了恒河猴的心脏功能
通过手术诱发心脏病发作的猴子这种高度平移模型的显著改进是
这至少部分归因于移植细胞产生的收缩力。尽管有了这些改善
在功能方面,4周后仅约5%的细胞存活。组织工程代表了一种方法,
通过复制的细胞和细胞外基质组成的肌肉重建策略,
心
在心脏中,细胞以双螺旋三维结构定向。这种取向产生了
像拧一块湿抹布一样扭动。这种扭曲有助于将心肌细胞15%的缩短和8%的增厚扩展到
射血分数65%朝向产生能够适应于患者的大小和位置的个性化治疗
我们的目标是概括心肌的结构和扭转功能。的
这一建议的中心假设是:1)复制心肌的生理扭曲是必要的,
心脏重新肌肉化,以及2)3D生物打印对齐的心脏片,
方向将产生扭曲。重要的是,这种方法是对以前开发的3D打印技术的补充。
血管化策略,并实现可扩展和可定制的方法。总的来说,该项目旨在产生
一个更生理的组织,可用于研究收缩功能的生理指标,这将
为旨在使心脏肌肉化的体内研究提供信息。此外,这种组织可能有助于阐明疾病
以前无法用更简单的体外模型识别的机制。
目的1:生成由对齐的各向异性心脏μ组织组成的可打印生物墨水。
目标2:将载有μ组织的墨水3D生物打印到单轴对齐的心脏组织片中。
目标3:确定3D生物打印层之间的相对对齐如何影响扭曲参数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN AHRENS其他文献
JOHN AHRENS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN AHRENS', 18)}}的其他基金
Bioprinting A Physiologically Aligned, Thick Cardiac Tissue for Regenerative Medicine
生物打印生理排列的厚心肌组织用于再生医学
- 批准号:
10020770 - 财政年份:2019
- 资助金额:
$ 3.72万 - 项目类别:
Bioprinting A Physiologically Aligned, Thick Cardiac Tissue for Regenerative Medicine
生物打印生理排列的厚心肌组织用于再生医学
- 批准号:
10245085 - 财政年份:2019
- 资助金额:
$ 3.72万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 3.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 3.72万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 3.72万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 3.72万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 3.72万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 3.72万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 3.72万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant