Coupling metabolic pathways with pluripotent gene regulation in mouse embryonic stem cells
小鼠胚胎干细胞中代谢途径与多能基因调控的耦合
基本信息
- 批准号:9760563
- 负责人:
- 金额:$ 4.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-24 至 2022-06-23
- 项目状态:已结题
- 来源:
- 关键词:AKT Signaling PathwayAddressAutomobile DrivingBiochemical ReactionCellsCellular Metabolic ProcessChemicalsChromatinCouplingDNADNA MethylationDepositionDevelopmentEnzymesEpiblastExcisionFormulationGene ExpressionGene Expression RegulationGeneticGlucoseHistone H3HistonesInner Cell MassLysineMediatingMetabolicMetabolic PathwayMetabolismModificationMusPathway interactionsPermeabilityPharmacologyPhenotypePlayProductionRegulationRegulator GenesResearchResearch ProposalsRoleShapesSignal PathwaySignal TransductionStimulusSupplementationTestingWorkalpha ketoglutaratecell typechromatin modificationembryonic stem cellenzyme substrateexperimental studygenetic approachglucose metabolismhistone demethylaseimprovedinsightoxidationpluripotencypreimplantationpreservationprogramsself-renewaltranscription factor
项目摘要
Project Summary
Changes in cell fate ultimately occur through the acquisition of cell type-specific gene expression
programs that are enabled by cooperation between the chromatin landscape and transcription factor
availability. The deposition and removal of the chemical modifications that decorate chromatin require
metabolites that are intermediates of metabolic pathways, while several enzymes that remove these
marks use metabolites as part of their enzymatic reaction. Thus, cellular metabolic activity can shape
gene expression programs through metabolite-dependent effects on chromatin organization. A robust
gene regulatory network and permissive chromatin landscape are hallmarks of the naïve pluripotent
state in embryonic stem cells (ESCs), yet how intracellular metabolic pathways contribute to the
establishment of this distinct chromatin landscape remains unclear. Our previous work demonstrated
that naïve mouse ESCs in the ground state of pluripotency alter their metabolic flux to support larger
intracellular pools of the metabolite alpha-ketoglutarate (αKG) compared to their more committed
counterparts. Supplementation of more committed ESCs with exogenous, cell-permeable αKG is
sufficient to increase self-renewal. However, how naïve ESCs rewire metabolic pathways to promote
αKG accumulation, and how αKG enhances self-renewal, remain open questions.
The aim of this research proposal is to identify the pathways that support αKG accumulation and
determine the mechanism by which αKG promotes self-renewal. The PI3K/Akt signaling axis is a well-
known regulator of cellular metabolism and has been shown to support ESC self-renewal. Whether
this signaling axis plays a role in ESC metabolism, particularly αKG regulation, remains unexplored.
Using mass spectrometric analysis combined with pharmacologic and genetic approaches, we will
test the hypothesis that increased glucose oxidation mediated by Akt signaling is a major driver of the
αKG accumulation observed in naïve ESCs. Given that αKG serves as an obligate co-substrate for
multiple enzymes that catalyze the removal of DNA methylation and repressive histone marks, we
hypothesize that αKG accumulation drives loss of repressive chromatin marks at the locus of Nanog,
a core pluripotency transcription factor, thereby driving increased Nanog expression and stabilization
of the pluripotency-associated gene regulatory network. We will use genetic and pharmacologic
approaches to determine whether αKG accumulation stimulates self-renewal by enhancing Nanog
expression through a chromatin-mediated mechanism. These studies will address how mouse ESCs
couple metabolic pathways with regulation of the pluripotency gene regulatory network and will
provide critical insight into how metabolic regulation contributes to changes in cell identity.
项目概要
细胞命运的改变最终通过获得细胞类型特异性基因表达而发生
通过染色质景观和转录因子之间的合作实现的程序
可用性。装饰染色质所需的化学修饰的沉积和去除
代谢物是代谢途径的中间体,而一些酶可以去除这些代谢物
标记使用代谢物作为酶反应的一部分。因此,细胞代谢活动可以塑造
通过对染色质组织的代谢依赖性影响来进行基因表达程序。坚固耐用
基因调控网络和允许的染色质景观是幼稚多能性的标志
胚胎干细胞 (ESC) 的状态,但细胞内代谢途径如何促进
这种独特的染色质景观的建立仍不清楚。我们之前的工作证明了
处于多能性基态的幼稚小鼠 ESC 会改变其代谢通量以支持更大的
与更稳定的代谢物 α-酮戊二酸 (αKG) 的细胞内池相比
同行。向更稳定的 ESC 补充外源性、细胞可渗透的 αKG 是
足以增强自我更新能力。然而,幼稚的 ESC 如何重新连接代谢途径以促进
αKG 的积累,以及 αKG 如何增强自我更新,仍然是一个悬而未决的问题。
本研究计划的目的是确定支持 αKG 积累和
确定αKG促进自我更新的机制。 PI3K/Akt 信号轴是一个良好的
已知的细胞代谢调节剂,并已被证明支持 ESC 自我更新。无论
该信号轴在 ESC 代谢中发挥作用,特别是 αKG 调节,目前尚未被探索。
使用质谱分析结合药理学和遗传学方法,我们将
检验这样的假设:Akt 信号传导介导的葡萄糖氧化增加是
在幼稚 ESC 中观察到 αKG 积累。鉴于 αKG 作为专性共底物
多种酶催化 DNA 甲基化和抑制性组蛋白标记的去除,我们
假设 αKG 积累导致 Nanog 基因座上抑制性染色质标记的丢失,
核心多能性转录因子,从而驱动 Nanog 表达增加和稳定性
多能性相关基因调控网络。我们将利用遗传和药理学
确定 αKG 积累是否通过增强 Nanog 刺激自我更新的方法
通过染色质介导的机制表达。这些研究将解决小鼠 ESC 如何
将代谢途径与多能性基因调控网络的调控结合起来,并将
提供关于代谢调节如何影响细胞特性变化的重要见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paige Arnold其他文献
Paige Arnold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paige Arnold', 18)}}的其他基金
Coupling metabolic pathways with pluripotent gene regulation in mouse embryonic stem cells
小鼠胚胎干细胞中代谢途径与多能基因调控的耦合
- 批准号:
10007586 - 财政年份:2019
- 资助金额:
$ 4.5万 - 项目类别:
Coupling metabolic pathways with pluripotent gene regulation in mouse embryonic stem cells
小鼠胚胎干细胞中代谢途径与多能基因调控的耦合
- 批准号:
10179440 - 财政年份:2019
- 资助金额:
$ 4.5万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Research Grant














{{item.name}}会员




