Biosynthesis of the Leinamycin Family of Natural Products: Mechanistic Studies and Chemoenzymatic Analog Synthesis
莱纳霉素家族天然产物的生物合成:机理研究和化学酶法类似物合成
基本信息
- 批准号:9761034
- 负责人:
- 金额:$ 6.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-16 至 2022-05-15
- 项目状态:已结题
- 来源:
- 关键词:Acyl Carrier ProteinAddressAlkylating AgentsAnabolismAreaBiochemicalBiochemistryBiologicalBiological AssayBiological TestingBreathingCancer RemissionCellsChemicalsClinicalClinical TreatmentCollaborationsCysteineDNADNA AlkylationDNA DamageDevelopmentDiagnosisDiseaseDrug UtilizationEngineeringEnzymatic BiochemistryFamilyFinancial HardshipFutureGoalsGrowthHydrolysisIn VitroInvestigationIonsKnowledgeLeadLearningLettersLifeLyaseMalignant NeoplasmsMethylationModernizationMolecular BiologyNatural ProductsNatureOrganismOutcomeParentsPathway interactionsPharmaceutical PreparationsProcessProductionPropertyProteinsReactionReactive Oxygen SpeciesResistanceResistance developmentSiteSocietiesStreptomycesStructureSulfhydryl CompoundsSulfurTherapeuticTimeWorkanaloganti-canceranticancer activitycancer cellcancer therapychemical synthesischemotherapycombinatorialdesignexperimental studyimprovedleinamycinnanomolarneoplastic cellnovelprofessorscaffoldside effectstereochemistrysynthetic biologytraining opportunitytumortumor progression
项目摘要
PROJECT SUMMARY/ABSTRACT
Chemotherapy has been the centerpiece of cancer treatment in modern society, and will remain so for
the foreseeable future. DNA-damaging compounds have seen the most use historically in this regard, due to
cancer cells’ increased rates of growth and proliferation relative to normal, healthy cells. However, these
treatments often cause off-target effects and resistance development. Therefore, compounds that can damage
cancer cell DNA in a selective fashion and with a mechanism complementary to current clinical treatments
offer solutions to both of these issues. The natural product leinamycin (LNM) is a DNA-damaging compound
that only elicits its DNA-damaging effects upon activation by thiols, and has nanomolar activity against tumor
cells resistant to clinically utilized drugs. LNM E1 is an engineered LNM analog that upon activation by reactive
oxygen species (ROS) exerts its antitumor activity via a mechanism orthogonal to LNM. A single scaffold that
can be primed for DNA damage in two complementary ways is unique to this set of compounds, and sets the
stage for further optimization of the LNM scaffold in terms of anticancer activity. The biosynthetic origin of LNM
in Streptomyces has been an area of intense study, and many of the biosynthetic steps have been elucidated
and led to discoveries involving unprecedented chemical steps. The long-term goals of this project are to
harness the power of a mechanistic understanding of LNM biosynthesis to genetically alter producing
organisms for production of analogs with improved therapeutic properties. This proposal contains two aims: (i)
investigate the mechanism of a key biosynthetic step and (ii) access rationally-designed analogs of both LNM
and LNM E1 to answer specific questions about the compounds’ biological activities. The central hypothesis of
this proposal is that LNM compounds can be tuned and improved in both stability and potency through rational
design. This hypothesis is rationalized by Nature’s ability to produce an array of LNM-type compounds, which
have served as the inspiration for the structural changes proposed herein. The outcomes of this application will
be a mechanistic understanding of one of the key steps of LNM biosynthesis and access to novel LNM analogs
that can be used to answer key questions about LNM DNA-damaging and anticancer activity. These findings
can be applied to the long-term goal of rational biosynthetic manipulation to produce targeted structural LNM
analogs for further anticancer development.
项目摘要/摘要
在现代社会,化疗一直是癌症治疗的核心,而且在未来几年内仍将如此
可预见的未来。在这方面,历史上使用最多的是破坏DNA的化合物,原因是
相对于正常、健康的细胞,癌细胞的生长和增殖速度更快。然而,这些
治疗通常会引起偏离目标的效应和耐药性的产生。因此,可以破坏的化合物
一种选择性的癌细胞DNA,其机制与目前的临床治疗相辅相成
为这两个问题提供解决方案。天然产物雷诺霉素(LNM)是一种破坏DNA的化合物
这只会在硫醇激活时产生DNA损伤效应,并具有抗肿瘤的纳摩尔活性。
对临床用药有抵抗力的细胞。LNM E1是一种经过工程设计的LNM模拟产品,在通过反应激活时
氧物种(ROS)通过与LNM垂直的机制发挥其抗肿瘤活性。一个单一的脚手架
可以通过两种互补的方式为DNA损伤做准备是这组化合物所独有的,并设置了
为进一步优化LNM支架的抗癌活性奠定了基础。LNM的生物合成起源
在链霉菌中一直是一个密集的研究领域,许多生物合成步骤已经被阐明
并导致了涉及前所未有的化学步骤的发现。这个项目的长期目标是
利用对LNM生物合成的机械学理解的力量来改变遗传生产
用于生产具有改进的治疗特性的类似物的生物体。这项建议包含两个目的:(一)
研究关键生物合成步骤的机制和(Ii)获得两种LNM的合理设计的类似物
和LNM E1回答有关化合物生物活性的具体问题。的中心假说
这一建议是可以通过合理的调整和提高LNM化合物的稳定性和有效性
设计。这一假设是合理的,因为大自然有能力产生一系列LNM型化合物,这
都是本文提出的结构改革的灵感来源。本次申请的结果将是
对LNM生物合成和获得新的LNM类似物的关键步骤之一的机械理解
这可以用来回答有关LNM DNA损伤和抗癌活性的关键问题。这些发现
可以应用于合理的生物合成操作的长期目标,以产生靶向的结构性LNM
用于进一步抗癌开发的类似物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Steele其他文献
Andrew Steele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Steele', 18)}}的其他基金
Biosynthesis of the Leinamycin Family of Natural Products: Mechanistic Studies and Chemoenzymatic Analog Synthesis
莱纳霉素家族天然产物的生物合成:机理研究和化学酶法类似物合成
- 批准号:
10622656 - 财政年份:2019
- 资助金额:
$ 6.12万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 6.12万 - 项目类别:
Research Grant














{{item.name}}会员




