Early Prediction of Cognitive Deficits in Very Preterm Infants using Machine Learning and Brain Connectome

使用机器学习和脑连接组对极早产儿认知缺陷进行早期预测

基本信息

  • 批准号:
    9759972
  • 负责人:
  • 金额:
    $ 23.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-08 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The high risk of neurodevelopmental impairments is a major concern for parents and clinicians caring for premature babies. Annually, approximately 22,000 very preterm infants (i.e. ≤32 weeks gestational age) in the United States develop cognitive deficits. Efforts to target interventions to prevent neurodevelopmental sequelae are hampered by our current inability to diagnose disabilities before the age of 3 to 5 years. Research supports the notion that cognitive deficits may result from a perturbation of neural connection and communication. Recent brain connectome studies in adults and older children show that abnormal network properties are useful as prognostic biomarkers. Many of these studies have exploited machine learning models based on brain connectome data for the prediction of a variety of neurological conditions, however this progress has not been fully extended to the preterm population. Our preliminary studies suggest that early and accurate prediction of cognitive deficits at an individual level is possible using machine learning models based on brain connectome features at term corrected age (CA). We have correctly classified 91.3% of very preterm infants at high risk of cognitive deficits with 90% specificity and 92.3% sensitivity. Our overall objective is to develop a robust machine learning model that can analyze integrated structural and functional brain connectome data obtained at term CA to make a prediction of later cognitive deficits in very preterm infants. Our central hypothesis is that machine learning techniques analyzing integrated structural and functional brain connectome features at birth can predict cognitive deficits at 2 years CA at an individual level in very preterm infants with accuracy of greater than 90%, exceeding the performance of current classical multivariate analyses. The two specific aims to test the central hypothesis are: 1) Develop and implement a machine learning model to extract high-level brain connectome features and 2) Develop and validate a machine learning framework to predict cognitive deficits. On completion of the first aim, we will explicate the brain connectome, and extract high-dimensional connectome features that best represent the brain connectome. In the second aim, the machine learning model we proposed will be applied in predicting both cognitive deficit (i.e. 2-class classification) and cognitive scores on a continuous scale (i.e., regression) at 2 years CA. To quantify the model's discrimination, we will also validate its performance in data that are not used for the model development, and compare with the current conventional multivariate approach. The proposed research is significant because it will increase scientific knowledge about the developing brain connectome in very preterm infants and facilitate earlier identification of babies at high risk of neurodevelopmental deficits, allowing timely clinical interventions for optimal cognitive outcome.
项目总结/摘要 神经发育障碍的高风险是父母和临床医生关心的主要问题。 早产儿每年大约有22,000名早产儿 (i.e.≤32周胎龄) 美国发展认知缺陷。 努力采取有针对性的干预措施, 我们目前无法在3至5岁之前诊断残疾,这阻碍了后遗症的诊断。 研究支持认知缺陷可能是由于神经连接的干扰, 通信最近对成年人和年龄较大的儿童的大脑连接体研究表明, 这些性质可用作预后生物标志物。其中许多研究都利用了机器学习模型 基于大脑连接体数据预测各种神经系统疾病,然而, 这方面的进展尚未完全扩大到早产儿。我们的初步研究表明, 使用基于机器学习的模型,可以在个人层面上准确预测认知缺陷。 在足月校正年龄(CA)的脑连接体特征。我们已经正确分类了91.3%的极早产儿 对认知缺陷高危婴儿的特异性为90%,敏感性为92.3%。我们的总体目标是 开发一个强大的机器学习模型,可以分析整合的结构和功能大脑 在足月CA时获得的连接体数据,以预测极早产儿后期的认知缺陷。 我们的中心假设是,机器学习技术分析整合的结构和功能的大脑 出生时的连接体特征可以预测极早产儿在个体水平上2年CA时的认知缺陷 婴儿的准确性大于90%,超过了目前经典的多变量 分析。测试中心假设的两个具体目标是:1)开发和实现一台机器 学习模型来提取高级大脑连接体特征,以及2)开发并验证机器学习 预测认知缺陷的框架。完成第一个目标后,我们将解释大脑连接体, 并提取最能代表大脑连接体的高维连接体特征。在第二 目的是,我们提出的机器学习模型将被应用于预测认知缺陷(即2类 分类)和连续量表上的认知得分(即,2年CA时的回归。量化 模型的区分度,我们还将验证其在不用于模型的数据中的性能 发展,并与目前的传统多元方法进行比较。拟议的研究是 意义重大,因为它将增加关于早产儿大脑连接体发育的科学知识。 婴儿和促进早期识别婴儿在高风险的神经发育缺陷,允许及时 临床干预以获得最佳认知结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lili He其他文献

Lili He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lili He', 18)}}的其他基金

Quantification of Liver Fibrosis with MRI and Deep Learning
通过 MRI 和深度学习量化肝纤维化
  • 批准号:
    10581671
  • 财政年份:
    2021
  • 资助金额:
    $ 23.85万
  • 项目类别:
Quantification of Liver Fibrosis with MRI and Deep Learning
通过 MRI 和深度学习量化肝纤维化
  • 批准号:
    10371028
  • 财政年份:
    2021
  • 资助金额:
    $ 23.85万
  • 项目类别:
Quantification of Liver Fibrosis with MRI and Deep Learning
通过 MRI 和深度学习量化肝纤维化
  • 批准号:
    10096229
  • 财政年份:
    2021
  • 资助金额:
    $ 23.85万
  • 项目类别:
MRI and Deep Learning for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants
MRI 和深度学习用于早期预测极早产儿神经发育缺陷
  • 批准号:
    10689695
  • 财政年份:
    2020
  • 资助金额:
    $ 23.85万
  • 项目类别:
MRI and Deep Learning for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants
MRI 和深度学习用于早期预测极早产儿神经发育缺陷
  • 批准号:
    10267180
  • 财政年份:
    2020
  • 资助金额:
    $ 23.85万
  • 项目类别:
MRI and Deep Learning for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants
MRI 和深度学习用于早期预测极早产儿神经发育缺陷
  • 批准号:
    10468770
  • 财政年份:
    2020
  • 资助金额:
    $ 23.85万
  • 项目类别:
MRI and Deep Learning for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants
MRI 和深度学习用于早期预测极早产儿神经发育缺陷
  • 批准号:
    10028428
  • 财政年份:
    2020
  • 资助金额:
    $ 23.85万
  • 项目类别:

相似海外基金

Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
  • 批准号:
    10653464
  • 财政年份:
    2023
  • 资助金额:
    $ 23.85万
  • 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
  • 批准号:
    2316108
  • 财政年份:
    2023
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
  • 批准号:
    BB/V006738/1
  • 财政年份:
    2020
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
  • 批准号:
    10294664
  • 财政年份:
    2020
  • 资助金额:
    $ 23.85万
  • 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
  • 批准号:
    422882
  • 财政年份:
    2019
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
  • 批准号:
    430871
  • 财政年份:
    2019
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
  • 批准号:
    9811094
  • 财政年份:
    2019
  • 资助金额:
    $ 23.85万
  • 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
  • 批准号:
    18K16103
  • 财政年份:
    2018
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
  • 批准号:
    1823881
  • 财政年份:
    2018
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
  • 批准号:
    369385245
  • 财政年份:
    2017
  • 资助金额:
    $ 23.85万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了