A multivariate predictive model for long-term disability post subarachnoid hemorrhage in Caucasian and African American populations
白种人和非裔美国人蛛网膜下腔出血后长期残疾的多变量预测模型
基本信息
- 批准号:9759999
- 负责人:
- 金额:$ 50.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-08 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Admission activityAffectAffective SymptomsAfrican AmericanAgeAneurysmal Subarachnoid HemorrhagesAutomobile DrivingCategoriesCaucasiansClinicClinicalClinical DataCollectionDNA RepositoryDataData SetDatabasesDevelopmentFosteringFoundationsGenderGenesGeneticGenomicsGenotypeGlasgow Coma ScaleGlasgow Outcome ScaleGoalsIndividualInterventionKnowledgeMarital StatusMeasuresMedical GeneticsMethodsModelingNeurobehavioral ManifestationsOutcomePathway interactionsPatientsPhasePopulationPredictive FactorPublic HealthQuality of lifeRaceRehabilitation therapyResearchRiskSalivaSamplingSiteStrokeSubarachnoid HemorrhageTestingUniversitiesValidationVariantWorkbasecaucasian Americanclinical practiceclinical translationcohortdisabilityeffective interventionexperiencegenetic associationimprovedimproved outcomeinnovationinsightmodel developmentmortalitynoveloutcome predictionphysical symptompost strokeprecision medicinepredictive modelingprematureprogramsracial differenceracial disparityracial diversityrecruitresponsesocialsymptom science
项目摘要
Aneurysmal subarachnoid hemorrhage (aSAH) strikes relatively young individuals and carries high
rates of mortality and severe disability. While social, clinical, and genetic factors have each independently been
shown to be associated with disability, there remains a large portion of unexplained variability as well as great
disparities in outcome for African American patients as compared to Caucasian patients. Thus, there is a gap
in knowledge relating to: 1) accurate prediction of those most at risk for long-term disability outcomes and 2)
the relative contributions of these multivariate factors for the observed disparities in outcome seen for African
Americans. These gaps currently present a critical barrier toward the goal of developing an individualized
intervention to reduce disability and increase quality of life after aSAH. The objective of this current proposal is
to lay the foundation for such an intervention by accurately identifying individuals most at risk and identifying
the factors contributing to the racial disparities seen for these populations. Our central hypothesis is that
multivariate models encompassing selected social, clinical, and genetic factors will provide a sensitive and
specific prediction of 12-month disability outcomes for Caucasian and African American populations. Guided by
our strong pilot data and leveraging the power of two existing databases, this hypothesis will be tested by two
specific aims: 1) Using social, clinical, and genetic data, we propose to develop a predictive model for disability
12 months post aSAH in a Caucasian cohort; and 2) Using social, clinical, and genetic data, we propose to
develop a predictive model for disability 12 months post aSAH in an African American cohort. After validation
and cross-validation, the uniformity of the two models will be compared for insights into factors driving the
disparities in outcome between these groups. This project is innovative for its multivariate predictive model that
incorporates the collection and addition of genetic data and also for the racial diversity seen when comparing
these two unique longitudinal aSAH datasets. This project is significant, as it will inform precisely targeted
interventions aimed at reducing disability and disparity in outcomes post aSAH, which will allow a better quality
of life for these patients.
动脉瘤性蛛网膜下腔出血(ASAH)发病年龄较小,发病率较高。
死亡率和严重伤残率。虽然社会、临床和遗传因素各自独立地
被证明与残疾有关,仍然有很大一部分原因不明的变异性以及巨大的
与高加索人患者相比,非裔美国人患者的预后差异。因此,就有了差距
关于以下方面的知识:1)准确预测长期残疾后果的最高风险人群;2)
这些多变量因素对观察到的非洲结果差异的相对贡献
美国人。这些差距目前对开发个性化的
ASAH后减少残疾和提高生活质量的干预措施。目前这项提议的目标是
通过准确识别最有风险的个人和确定
造成这些人口出现种族差异的因素。我们的中心假设是
包含选定的社会、临床和遗传因素的多变量模型将提供敏感和
对高加索人和非裔美国人人口12个月残疾结局的具体预测。指导原则
我们强大的试点数据,并利用两个现有数据库的力量,这一假设将通过两个
具体目标:1)利用社会、临床和遗传数据,我们建议开发一个残疾预测模型
高加索人群ASAH后12个月;和2)使用社会、临床和基因数据,我们建议
在一个非裔美国人队列中开发一种预测ASAH后12个月残疾的模型。验证后
和交叉验证,将比较两个模型的一致性,以深入了解推动
这些组之间的结果存在差异。该项目的创新之处在于其多变量预测模型
结合了遗传数据的收集和添加,以及在比较时看到的种族多样性
这两个唯一的纵向ASAH数据集。这个项目意义重大,因为它将准确地告知目标
旨在减少ASAH后残疾和预后差异的干预措施,这将使质量更好
这些病人的生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ansley Stanfill其他文献
Ansley Stanfill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ansley Stanfill', 18)}}的其他基金
Common Fund Data Supplement to A Multivariate Predictive Model for Long- term Disability Post Subarachnoid Hemorrhage in Caucasian and African Populations (NIH/NINR 1R01NR017407)
白种人和非洲人群蛛网膜下腔出血后长期残疾的多变量预测模型的共同基金数据补充 (NIH/NINR 1R01NR017407)
- 批准号:
9983373 - 财政年份:2018
- 资助金额:
$ 50.36万 - 项目类别:
A multivariate predictive model for long-term disability post subarachnoid hemorrhage in Caucasian and African American populations
白种人和非裔美国人蛛网膜下腔出血后长期残疾的多变量预测模型
- 批准号:
9982447 - 财政年份:2018
- 资助金额:
$ 50.36万 - 项目类别:
Dopaminergic genetic contributions to obesity in kidney transplant recipients
多巴胺能遗传对肾移植受者肥胖的影响
- 批准号:
8638784 - 财政年份:2013
- 资助金额:
$ 50.36万 - 项目类别:
Dopaminergic genetic contributions to obesity in kidney transplant recipients
多巴胺能遗传对肾移植受者肥胖的影响
- 批准号:
8520587 - 财政年份:2013
- 资助金额:
$ 50.36万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




