Application of advanced methodology to osteoarthritis phenotyping
先进方法在骨关节炎表型分析中的应用
基本信息
- 批准号:9889390
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAge-YearsArthritisBiomechanicsBiometryCartilageChronicClinicalClinical ResearchClinical TrialsClinical Trials DesignDataData SetDegenerative polyarthritisDiscriminationDiseaseEpidemiologyEtiologyFailureFibrinogenFutureGeneral PopulationGoalsHeterogeneityIndividualInflammationInjuryInterventionJointsKnee InjuriesKnee OsteoarthritisLinkMachine LearningMeniscus structure of jointMethodologyMorbidity - disease rateNon obeseObesityOutcomePainPatientsPersonsPharmaceutical PreparationsPhenotypePopulationProgressive DiseasePublic HealthRandomizedResearch MethodologyResourcesRheumatologyRisk FactorsStructureSubgroupSymptomsSyndromeSynovial MembraneTechniquesTestingTimeTissuesValidationVisitWorkbasebonecohortcommon treatmentcomputer sciencedemographicsdesigndisabilitydrug developmenteffective interventionexperienceimprovedinjuredinnovationinterdisciplinary collaborationjoint destructionlarge datasetsloss of functionmachine learning methodnovelprecision medicinepreventstatisticsunsupervised learning
项目摘要
Osteoarthritis (OA) is highly prevalent, contributes to substantial morbidity in the population, and lacks effective
interventions to prevent onset and progression. Importantly, and like many other chronic conditions, OA is not
a single disease but rather a heterogeneous condition consisting of multiple subgroups, or phenotypes, with
differing underlying pathophysiological mechanisms. It is becoming increasingly clear that consideration of
specific OA phenotypes in clinical studies and trials is critically needed to move the field forward. The overall
goal of this line of work is to identify and understand potential phenotypes of knee osteoarthritis (KOA)
to better inform future research efforts and treatments; this exploratory R21 project using OA Initiative
(OAI) data will investigate novel methodology to support phenotyping in KOA. Successful treatments for
OA will need to be targeted to, and tested in, specifically chosen OA phenotypes. Our hypothesis is that an
understanding of KOA phenotypes, a key step toward Precision Medicine in OA, will lead to more
successful clinical studies in the long-term. To approach this important clinical problem, we propose a
project in which we will apply innovative machine learning methods and validation strategies to data from the
large, publicly available OAI cohort. We will leverage this large dataset, along with local expertise in statistics,
biostatistics and machine learning methodology, to tackle the problem of phenotyping this heterogeneous
disease. In Aim 1, we will utilize a data-driven, unsupervised learning approach, to cluster features that best
define and discriminate among phenotypes of KOA in the OAI dataset, using biclustering and a novel
significance test (SigClust) developed by co-I Marron. For Aim 2, we will test specific hypotheses of relevance
to OA outcomes, such as differences between those with and without OA, or those who do or do not develop
new or worsening disease, using another set of machine learning methods (Direction-projection-permutation
[DiProPerm] hypothesis testing, and Distance-Weighted Discrimination [DWD]), also developed by co-I Marron,
in the full cohort and in any identified clusters from Aim 1. In order to address these aims, this proposal
involves interdisciplinary collaborations among experts in statistics, biostatistics, computer science,
rheumatology, and epidemiology. This work will significantly impact the field by fulfilling a critical need to
accurately define OA phenotypes, discover the key features associated with these phenotypes, link phenotype
subgroups to underlying mechanisms and use this information to inform and focus future clinical studies. In the
long term, we expect that this strategy will lead to more personalized and successful management of the
millions of people affected by OA.
骨关节炎(OA)是高度流行的,导致人群中的大量发病率,并且缺乏有效的治疗。
干预措施,以防止发病和进展。重要的是,像许多其他慢性疾病一样,OA不是
单一疾病,而是由多个亚组或表型组成的异质性疾病,
不同的潜在病理生理机制。越来越明显的是,
在临床研究和试验中发现特定的OA表型是推动该领域向前发展的关键。整体
这一系列工作的目标是识别和了解膝关节骨关节炎(KOA)的潜在表型
为了更好地为未来的研究工作和治疗提供信息;这个探索性的R21项目使用OA倡议
(OAI)数据将调查新的方法来支持KOA的表型。成功的治疗
骨关节炎将需要有针对性的,并在特定的骨关节炎表型进行测试。我们假设
对KOA表型的理解是OA精准医学的关键一步,将导致更多的
长期的临床研究。为了解决这一重要的临床问题,我们提出了一个
在这个项目中,我们将把创新的机器学习方法和验证策略应用于来自
大型、公开可用的OAI队列。我们将利用这个大型数据集,沿着当地的统计专业知识,
生物统计学和机器学习方法,以解决这种异质性的表型问题,
疾病在目标1中,我们将利用数据驱动的无监督学习方法来聚类最好的特征。
使用双聚类和一种新的
显著性检验(SigClust)由Co-I Marron开发。对于目标2,我们将测试相关性的特定假设
OA的结果,如有和没有OA之间的差异,或那些谁做或不发展
新的或恶化的疾病,使用另一组机器学习方法(方向投影排列
[DiProPerm]假设检验和距离加权判别[DWD]),也由co-I Marron开发,
在整个队列中以及在目标1中的任何确定的集群中。为了实现这些目标,本提案
涉及统计学,生物统计学,计算机科学,
风湿病学和流行病学。这项工作将通过满足以下关键需求对该领域产生重大影响:
准确定义OA表型,发现与这些表型相关的关键特征,
亚组的潜在机制,并使用这些信息来通知和重点未来的临床研究。在
从长远来看,我们预计这一战略将导致更加个性化和成功的管理,
数百万人受到OA的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda E Nelson其他文献
Amanda E Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda E Nelson', 18)}}的其他基金
Mentoring in Patient Oriented Research in Osteoarthritis
以患者为导向的骨关节炎研究的指导
- 批准号:
10505910 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Mentoring in Patient Oriented Research in Osteoarthritis
以患者为导向的骨关节炎研究的指导
- 批准号:
10689126 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Assessment of ultrasound features of knee osteoarthritis in a population-based community cohort
基于人群的社区队列中膝骨关节炎超声特征的评估
- 批准号:
10158441 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Development of an AI/ML-ready knee ultrasound dataset in a population-based cohort
在基于人群的队列中开发支持 AI/ML 的膝盖超声数据集
- 批准号:
10591756 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Assessment of ultrasound features of knee osteoarthritis in a population-based community cohort
基于人群的社区队列中膝骨关节炎超声特征的评估
- 批准号:
10633265 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Assessment of ultrasound features of knee osteoarthritis in a population-based community cohort
基于人群的社区队列中膝骨关节炎超声特征的评估
- 批准号:
10395598 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Application of advanced methodology to osteoarthritis phenotyping
先进方法在骨关节炎表型分析中的应用
- 批准号:
10083187 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Johnston County Osteoarthritis Project: Arthritis, Disability, and Other Chronic Diseases
约翰斯顿县骨关节炎项目:关节炎、残疾和其他慢性病
- 批准号:
9341077 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Variations in Hip Morphology: Frequency and Impact on Osteoarthritis Outcomes
髋关节形态的变化:频率及其对骨关节炎结果的影响
- 批准号:
8680142 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Variations in Hip Morphology: Frequency and Impact on Osteoarthritis Outcomes
髋关节形态的变化:频率及其对骨关节炎结果的影响
- 批准号:
8878026 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists