Tunable Carbon Electrodes for in vivo Neurotransmitter Detection

用于体内神经递质检测的可调谐碳电极

基本信息

  • 批准号:
    9889960
  • 负责人:
  • 金额:
    $ 34.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Microelectrodes are popular for sensing real-time changes in neurotransmitters and understanding the dynamics of neurotransmission in the brain. However, technology has changed little in three decades and there are many unmet technological needs for in vivo electrochemical sensors. In particular, electrodes are needed with high selectivity to discriminate different molecules, small enough tips to localize in small model organisms, and geometries that enable global sensing at high temporal resolution. One new electrode is unlikely to solve all these problems; instead, the electrochemical tool-kit needs to be expanded with many types of electrode designs, materials, and fabrication strategies so that electrodes can be customized for the application. The long term goal of my lab is to develop new electrodes for the measurement of real-time changes of neurotransmitters in vivo and use them to understand real-time detection of neurotransmitter dynamics in the brain. The goal of this project is to develop carbon nanomaterial electrodes, carbon nanopipettes, and 3D printed electrodes with tunable selectivity, tip diameter, and geometry. In the first specific aim, we will use carbon nanomaterials, surface treatments, custom waveforms, and imaging-based software approaches to tune the oxidation of difficult to detect molecules and reduce biofouling. Discrimination and co-detection of histamine, adenosine, and hydrogen peroxide will be targeted, as well as reduced fouling by serotonin and its metabolites. In the second aim, carbon nanopipettes will be developed as nanoelectrodes with tunable tip diameters that can sample from submicron regions, facilitating measurements in small Drosophila brain regions without destroying the tissue. Different geometries will be compared, included closed-tip, cavity, and open tube pipettes. In the third aim, a completely new way to make an electrode will be explored: nano-3D printing. A Nanoscribe 3D printer with 500 nm printing resolution will be used and designs then oxygen/argon annealed, which causes shrinking and carbonization. This 3D printing technique will enable rational design of free-standing, high temporal resolution sensors and flexible carbon mesh electrodes that measure neurotransmitters more globally. The result of this project will be many different kinds of electrodes that enable many different neurochemical applications, from discriminating adenosine and histamine transients in vivo, to dopamine detection in discrete Drosophila regions that are less than 10 m wide, to rapid measurements of neurotransmission on a global scale. The significance of this project is that it will transform in vivo microelectrode design to facilitate complex dynamic measurements of neurochemistry that will lead to a better understanding of the how the brain functions and how if malfunctions during disease. The expected positive impact of this new electrode design is thus new platforms of electrodes with tunable electrochemistry to better understand real-time neurotransmission.
项目总结 微电极在感知神经递质的实时变化和了解 大脑中神经传递的动力学。然而,三十年来,技术几乎没有什么变化, 活体电化学传感器还有许多尚未满足的技术需求。特别是,电极是 需要高选择性来区分不同的分子,足够小的提示可以在小模型中定位 生物体,以及能够以高时间分辨率进行全球传感的几何图形。一种新的电极是 不太可能解决所有这些问题;相反,电化学工具包需要扩展许多 电极设计、材料和制造策略的类型,以便电极可以为 申请。我的实验室的长期目标是开发用于实时测量的新电极 体内神经递质的变化及其在了解神经递质实时检测中的作用 大脑中的动态。该项目的目标是开发碳纳米材料电极,碳 纳米管和3D打印电极,具有可调的选择性、尖端直径和几何形状。在第一个 具体地说,我们将使用碳纳米材料、表面处理、定制波形和基于成像的 调整难以检测到的分子的氧化和减少生物污垢的软件方法。歧视 组胺、腺苷和过氧化氢的联合检测将成为目标,并减少污垢。 由5-羟色胺及其代谢物引起。在第二个目标中,将开发碳纳米管作为纳米电极 具有可调节的尖端直径,可从亚微米区域取样,便于在较小范围内进行测量 在不破坏组织的情况下,果蝇的大脑区域。将比较不同的几何图形,包括 闭口式、空腔式和开管式吸量管。在第三个目标中,一种全新的制造电极的方法将是 探索:纳米3D打印。将使用具有500 nm打印分辨率的Nanoscribe 3D打印机,并设计 然后进行氧气/氩气退火,这会导致收缩和碳化。这种3D打印技术将使 合理设计独立式、高时间分辨率传感器和柔性碳网电极 更全球化地测量神经递质。该项目的结果将是多种不同类型的电极 这使得许多不同的神经化学应用成为可能,从区分腺苷和组胺的瞬间 在体内,对于宽度小于10m的离散果蝇区域中的多巴胺检测,到快速 在全球范围内对神经传递的测量。这个项目的意义在于它将改变 体内微电极设计,以促进复杂的神经化学动态测量,将导致 更好地了解大脑是如何运作的,以及如果疾病期间出现故障是如何运作的。预期中的 因此,这种新电极设计的积极影响是具有可调电化学的新电极平台 以更好地了解实时神经传递。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

B. JILL VENTON其他文献

B. JILL VENTON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('B. JILL VENTON', 18)}}的其他基金

Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
  • 批准号:
    10538604
  • 财政年份:
    2022
  • 资助金额:
    $ 34.82万
  • 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
  • 批准号:
    10522260
  • 财政年份:
    2022
  • 资助金额:
    $ 34.82万
  • 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
  • 批准号:
    10656510
  • 财政年份:
    2022
  • 资助金额:
    $ 34.82万
  • 项目类别:
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
  • 批准号:
    10365275
  • 财政年份:
    2022
  • 资助金额:
    $ 34.82万
  • 项目类别:
Carbon nanotube fiber and yarn microelectrodes for high temporal resolution measu
用于高时间分辨率测量的碳纳米管纤维和纱线微电极
  • 批准号:
    8701642
  • 财政年份:
    2014
  • 资助金额:
    $ 34.82万
  • 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
  • 批准号:
    8387636
  • 财政年份:
    2012
  • 资助金额:
    $ 34.82万
  • 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
  • 批准号:
    8651955
  • 财政年份:
    2012
  • 资助金额:
    $ 34.82万
  • 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
  • 批准号:
    8469587
  • 财政年份:
    2012
  • 资助金额:
    $ 34.82万
  • 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
  • 批准号:
    8828811
  • 财政年份:
    2012
  • 资助金额:
    $ 34.82万
  • 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
  • 批准号:
    9043204
  • 财政年份:
    2012
  • 资助金额:
    $ 34.82万
  • 项目类别:

相似国自然基金

细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
  • 批准号:
    81570244
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
  • 批准号:
    81171113
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
  • 批准号:
    10929664
  • 财政年份:
    2023
  • 资助金额:
    $ 34.82万
  • 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
  • 批准号:
    23K14685
  • 财政年份:
    2023
  • 资助金额:
    $ 34.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
  • 批准号:
    10679989
  • 财政年份:
    2023
  • 资助金额:
    $ 34.82万
  • 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
  • 批准号:
    BB/W016974/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.82万
  • 项目类别:
    Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
  • 批准号:
    23K07566
  • 财政年份:
    2023
  • 资助金额:
    $ 34.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
  • 批准号:
    10760676
  • 财政年份:
    2023
  • 资助金额:
    $ 34.82万
  • 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
  • 批准号:
    10605737
  • 财政年份:
    2023
  • 资助金额:
    $ 34.82万
  • 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
  • 批准号:
    2319114
  • 财政年份:
    2023
  • 资助金额:
    $ 34.82万
  • 项目类别:
    Standard Grant
Late-Stage Functionalisation of Cyclic Guanosine Monophosphate - Adenosine Monophosphate
环单磷酸鸟苷-单磷酸腺苷的后期功能化
  • 批准号:
    2751533
  • 财政年份:
    2022
  • 资助金额:
    $ 34.82万
  • 项目类别:
    Studentship
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
  • 批准号:
    573323-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.82万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了