Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
基本信息
- 批准号:10656510
- 负责人:
- 金额:$ 53.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAreaBiologicalBiosensing TechniquesBiosensorBrainCarbonCarbon NanotubesChemicalsCommunitiesComplexComputer softwareDepositionDetectionDevelopmentDiameterDiscriminationDiseaseDopamineDrosophila genusElectrochemistryElectrodesElectron TransportEngineeringEnzymesGlutamatesGoalsGrantHeightImageImplantMammalsMeasurementMeasuresMetalsMethodsMicroelectrodesModelingMonitorMuscle ContractionNeedlesNeuromodulatorNeuromuscular JunctionNeuronsNeuropeptidesNeuropilNeurosciencesNeurotransmittersOctopamineOrganismPatternPeriodicityPropertyReproducibilityResearchResolutionScanningSignal TransductionSurfaceSynapsesSystemTechnologyTestingThinnessTimeTryptophanTyrosineWorkcantilevercarbon fiberdesignexperiencefabricationimprovedin vivoin vivo monitoringinnovationmanufacturing technologymetermind controlminiaturizemodel organismmonoaminenanoelectrodesnanofibernanolithographynanomaterialsneurochemistryneuroregulationnew technologynovelnovel strategiessensorsensor technologysubmicrontechnology platformtemporal measurement
项目摘要
PROJECT SUMMARY
How does chemical signaling in the brain control function? Answering this question requires fast sensors to
measure at the synapse. Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMEs) has
enabled in vivo detection of neuromodulators. However, most sensors are too big to measure at the synapse
and there are challenges to distinguish neurochemicals and monitor multiple neuromodulators simultaneously.
Thus, new sensor technology is needed to target the synapse and measure multiple neuromodulators in real-
time. In the previous period, our lab developed new approaches to electrode development, including testing new
carbon nanomaterials and 3D printing nanolithography. However, these methods have not been customized to
meet the experimental requirements for emerging applications in neurochemical research. The goal of this
project is to develop customized carbon electrodes and tune their properties for applications at the synapse,
including (1) nanoelectrodes for monoamine detection in the Drosophila neuromuscular junction (NMJ) synapse,
(2) trapping electrodes for highly sensitive and selective measurements of neuropeptides in Drosophila NMJ,
and (3) a microelectromechanical systems (MEMS) platform for multianalyte detection of dopamine and
glutamate simultaneously in vivo and octopamine and glutamate simultaneously in the Drosophila NMJ. This
work is significant because it will transform microelectrode design to facilitate complex measurements
of neurochemistry that will lead to a better understanding of neurochemical signaling at the synapse. In
Aim 1, we will create practical nanoelectrodes for measurements in smaller organisms by coating etched metal
wires with carbon nanospikes and 3D printing long nanofibers through shrinkage-induced pulling. These small,
less than 200-500 nm nanoelectrodes will be used to measure octopamine in the Drosophila NMJ synapse. In
Aim 2, we will design electrodes with trapping effects to improve sensitivity and selectivity. These carbon
nanotube (CNT) yarn electrodes and 3D printed electrodes with arrays of carbon pillars will be used to measure
neuropeptides in the Drosophila NMJ. In Aim 3, we will develop a Si-based platform for biosensors and direct
electrochemistry, enabling multianalyte measurements. The Si-cantilever microneedle will be implantable in vivo
and in Drosophila NMJ for simultaneous measurements of neurotransmitters. The proposed research is
innovative because it uses new technology to radically change electrode fabrication and enable novel electrode
designs. This work will demonstrate proof of principle that these electrodes are capable of measuring many
neuromodulators in a model synapse Drosophila NMJ as well as in vivo. With a focus on easy, batch fabrication,
these electrodes will be made available to the neuroscience community, to facilitate studies of real-time
neuromodulation and how it malfunctions during disease.
项目总结
大脑中的化学信号是如何控制功能的?回答这个问题需要快速的传感器来
在突触处测量。碳纤维微电极的快速扫描循环伏安法(FSCV)
能够在体内检测神经调节剂。然而,大多数传感器都太大了,无法在突触上进行测量
而且,在区分神经化学物质和同时监测多个神经调节剂方面也存在挑战。
因此,需要新的传感器技术来瞄准突触,并实时测量多种神经调节剂。
时间到了。在前一阶段,我们的实验室开发了新的电极开发方法,包括测试新的
碳纳米材料和3D打印纳米光刻技术。但是,这些方法尚未定制为
满足神经化学研究中新兴应用的实验要求。这样做的目的是
该项目是开发定制的碳电极,并调整它们的性能,以用于突触,
包括(1)用于检测果蝇神经肌肉接头(NMJ)突触中单胺的纳米电极,
(2)高灵敏、选择性测定果蝇NMJ神经肽的捕获电极,
和(3)用于多分析物检测多巴胺和
体内谷氨酸同时存在,果蝇体内同时存在章鱼胺和谷氨酸。这
这项工作意义重大,因为它将改变微电极设计,使复杂的测量变得容易
这将有助于更好地理解突触的神经化学信号。在……里面
目标1,我们将通过涂层蚀刻的金属来创建实用的纳米电极,用于在较小的生物体中进行测量
带有碳纳米棒的导线和通过收缩诱导拉动的3D打印长纳米纤维。这些小的,
少于200-500纳米的纳米电极将被用来测量果蝇NMJ突触中的章鱼胺。在……里面
目的2,我们将设计具有捕获效应的电极以提高灵敏度和选择性。这些碳
将使用纳米管(CNT)纱线电极和带有碳柱阵列的3D打印电极来测量
果蝇NMJ中的神经肽在目标3中,我们将开发一个基于硅的生物传感器平台,并直接
电化学,使多分析测量成为可能。硅悬臂式微针将在体内植入
在果蝇NMJ中进行神经递质的同步测量。拟议的研究是
创新,因为它使用新技术从根本上改变电极制造并使新电极成为可能
设计。这项工作将证明这些电极能够测量许多
突触模型果蝇NMJ以及体内的神经调节剂。专注于简单、批量的制造,
这些电极将提供给神经科学界,以促进实时研究
神经调节及其在疾病期间如何失灵。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
B. JILL VENTON其他文献
B. JILL VENTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('B. JILL VENTON', 18)}}的其他基金
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
- 批准号:
10538604 - 财政年份:2022
- 资助金额:
$ 53.52万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10522260 - 财政年份:2022
- 资助金额:
$ 53.52万 - 项目类别:
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
- 批准号:
10365275 - 财政年份:2022
- 资助金额:
$ 53.52万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
9889960 - 财政年份:2018
- 资助金额:
$ 53.52万 - 项目类别:
Carbon nanotube fiber and yarn microelectrodes for high temporal resolution measu
用于高时间分辨率测量的碳纳米管纤维和纱线微电极
- 批准号:
8701642 - 财政年份:2014
- 资助金额:
$ 53.52万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8387636 - 财政年份:2012
- 资助金额:
$ 53.52万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8651955 - 财政年份:2012
- 资助金额:
$ 53.52万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8469587 - 财政年份:2012
- 资助金额:
$ 53.52万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8828811 - 财政年份:2012
- 资助金额:
$ 53.52万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
9043204 - 财政年份:2012
- 资助金额:
$ 53.52万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Tribal Intertidal Digital Ecological Surveys Project: Using Large-Area Imaging to Assess Intertidal Biological Response to Changing Oceanographic Conditions in Partnership with Indigenous Nations
部落潮间带数字生态调查项目:与土著民族合作,利用大面积成像评估潮间带生物对不断变化的海洋条件的反应
- 批准号:
532685-2019 - 财政年份:2022
- 资助金额:
$ 53.52万 - 项目类别:
Postgraduate Scholarships - Doctoral
Tribal Intertidal Digital Ecological Surveys Project: Using Large-Area Imaging to Assess Intertidal Biological Response to Changing Oceanographic Conditions in Partnership with Indigenous Nations
部落潮间带数字生态调查项目:与土著民族合作,利用大面积成像评估潮间带生物对不断变化的海洋条件的反应
- 批准号:
532685-2019 - 财政年份:2020
- 资助金额:
$ 53.52万 - 项目类别:
Postgraduate Scholarships - Doctoral
biological interactions among forest-dwelling fungus gnats and their natural enemies in shiitake mashroom production area
香菇产区森林真菌蚊与其天敌之间的生物相互作用
- 批准号:
19K06152 - 财政年份:2019
- 资助金额:
$ 53.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tribal Intertidal Digital Ecological Surveys Project: Using Large-Area Imaging to Assess Intertidal Biological Response to Changing Oceanographic Conditions in Partnership with Indigenous Nations
部落潮间带数字生态调查项目:与土著民族合作,利用大面积成像评估潮间带生物对不断变化的海洋条件的反应
- 批准号:
532685-2019 - 财政年份:2019
- 资助金额:
$ 53.52万 - 项目类别:
Postgraduate Scholarships - Doctoral
To what extent does governance play a role in how effectively a marine protected area in the Irish Sea reaches its biological and socioeconomic goals?
治理在多大程度上对爱尔兰海海洋保护区如何有效实现其生物和社会经济目标发挥作用?
- 批准号:
2287487 - 财政年份:2019
- 资助金额:
$ 53.52万 - 项目类别:
Studentship
War and Biological Ageing in Vietnam: A Planning Grant to Foster Collaboration on a Novel Area of Global Research in Health and Ageing
越南的战争与生物衰老:一项规划拨款,以促进全球健康与老龄化研究新领域的合作
- 批准号:
404425 - 财政年份:2019
- 资助金额:
$ 53.52万 - 项目类别:
Miscellaneous Programs
Impact assessment of Noctiluca scintillans red tide on nutrient dynamics, biological processes in lower trophic levels and material cycle in the neritic area of Sagami Bay
夜光藻赤潮对相模湾浅海区营养动态、低营养层生物过程和物质循环的影响评估
- 批准号:
18K05794 - 财政年份:2018
- 资助金额:
$ 53.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large-area graphene based chemical and biological sensors
基于大面积石墨烯的化学和生物传感器
- 批准号:
355863-2011 - 财政年份:2015
- 资助金额:
$ 53.52万 - 项目类别:
Discovery Grants Program - Individual
Large-area graphene based chemical and biological sensors
基于大面积石墨烯的化学和生物传感器
- 批准号:
355863-2011 - 财政年份:2014
- 资助金额:
$ 53.52万 - 项目类别:
Discovery Grants Program - Individual
Theoretical simulation and experimental study on biological weathering mechanism of the rock around coastal area in Yaeyama Islands
八重山群岛沿岸岩石生物风化机制的理论模拟与实验研究
- 批准号:
26790079 - 财政年份:2014
- 资助金额:
$ 53.52万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




