Advanced Computational Approaches for NMR Data-mining
NMR 数据挖掘的高级计算方法
基本信息
- 批准号:9889134
- 负责人:
- 金额:$ 35.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal Disease ModelsBiologicalBiological MarkersBloodCardiovascular DiseasesCellsChemicalsClinicClinicalClinical MedicineComplementComputer softwareConsumptionDataData AnalysesData SetDevelopmentDiabetes MellitusDiagnosticDiseaseDrug toxicityEarly DiagnosisFrequenciesHealthHumanKnowledgeLeftLibrariesLinkMachine LearningMalignant NeoplasmsManualsMass Spectrum AnalysisMeasuresMedicalMetabolicMethodsModelingMolecularNMR SpectroscopyNatureNeurodegenerative DisordersNoiseNuclear Magnetic ResonanceNutritionalObesityOrganismOutcomePatientsPharmacologic SubstancePhenotypePlagueProcessRegulationRelaxationReportingReproducibilityResearchResidual stateResistanceSamplingSensitivity and SpecificityShapesSignal TransductionSocietiesSodium ChlorideSpectrum AnalysisStatistical AlgorithmStructureTemperatureTimeTissuesTreatment outcomeUrineVariantautomated algorithmautomated analysisbasebiological systemsbiomarker discoveryclinical diagnosticsclinical implementationclinical practicecomputational suitedata miningexperimental analysisexperimental studyhigh dimensionalityimprovedinfancymachine learning methodmetabolomemetabolomicsmultidimensional datanovelpersonalized medicinephenotypic biomarkersmall moleculestem
项目摘要
ABSTRACT
Nuclear magnetic resonance spectroscopy (NMR)-based metabolomics is a powerful method for identifying
metabolic perturbations that report on different biological states and sample types. Compared to mass
spectrometry, NMR provides robust and highly reproducible quantitative data in a matter of minutes, which
makes it very suitable for first-line clinical diagnostics. Although the metabolome is known to provide an
instantaneous snap-shot of the biological status of a cell, tissue, and organism, the utilization of NMR in clinical
practice is hindered by cumbersome data analysis. Major challenges include high-dimensionality of the data,
overlapping signals, variability of resonance frequencies (chemical shift), non-ideal shapes of signals, and low
signal-to-noise ratio (SNR) for low concentration metabolites. Existing approaches fail to address these
challenges and sample analysis is time-consuming, manually done, and requires considerable knowledge of
NMR spectroscopy. Recent developments in the field of sparse methods for machine learning and accelerated
convex optimization for high dimensional problems, as well as kernel-based spatial clustering show promise at
enabling us to overcome these challenges and achieve fully automated, operator-independent analysis. We
are developing two novel, powerful, and automated algorithms that capitalize on these recent developments in
machine learning. In Aim 1, we describe ‘NMRQuant’ for automated identification and quantification of
annotated metabolites irrespective of the chemical shift, low SNR, and signal shape variability. In Aim 2, we
describe ‘SPA-STOCSY’ for automated de-novo identification of molecular fragments of unknown, non-
annotated metabolites. Based on substantial preliminary data, we propose to evaluate these algorithms'
sensitivity, specificity, stability, and resistance to noise on phantom, biological, and clinical samples, comparing
them to current methods. We will validate the accuracy of analyses by experimental 2D NMR, spike-in, and
mass spectrometry. The proposed efforts will produce new NMR analytical software for discovery of both
annotated and non-annotated metabolites, substantially improving accuracy and reproducibility of NMR
analysis. Such analytical ability would change the existing paradigm of NMR-based metabolomics and provide
an even stronger complement to current mass spectrometry-based methods. This approach, once thoroughly
validated, will enable NMR to reach wide network of applications in biomedical, pharmaceutical, and nutritional
research and clinical medicine.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhandong Liu其他文献
Zhandong Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhandong Liu', 18)}}的其他基金
Advanced Computational Approaches for NMR Data-mining
NMR 数据挖掘的高级计算方法
- 批准号:
10372268 - 财政年份:2017
- 资助金额:
$ 35.66万 - 项目类别:
Imaging Mass Spectrometry for metabolome mapping
用于代谢组图谱的成像质谱法
- 批准号:
10175695 - 财政年份:2017
- 资助金额:
$ 35.66万 - 项目类别:
Biomarker discovery of Alzheimer's disease trajectory using NMR platform
使用 NMR 平台发现阿尔茨海默病轨迹的生物标志物
- 批准号:
10394015 - 财政年份:2017
- 资助金额:
$ 35.66万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant