Imaging Mass Spectrometry for metabolome mapping
用于代谢组图谱的成像质谱法
基本信息
- 批准号:10175695
- 负责人:
- 金额:$ 20.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAlgorithmsAreaAwardBiological MarkersBrainBrain DiseasesClinicalCodeComplementDataData CollectionDevelopmentDiagnosticDiseaseDisease modelEquipmentHealthHomeostasisHumanHybridsImageIndividualLabelLeadMachine LearningMapsMass Spectrum AnalysisMetabolicMethodsModelingNerve DegenerationNeurologistNeuronsOrganismOrganoidsPatientsPlayPositioning AttributeProcessPrognostic MarkerProtocols documentationRoleSensitivity and SpecificitySourceSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationTestingThinnessTissuesTranslationsanimal tissueautomated algorithmbiological systemsbiomarker discoverycell typediagnostic biomarkerhigh-throughput drug screeninghuman diseaseinstrumentmass spectrometermetabolic phenotypemetabolomenerve stem cellnovelquantitative imagingresponsescreeningsmall moleculetargeted imagingtissue regenerationtool
项目摘要
SUMMARY
In response to NOT-GM-20-013, we are requesting a supplement to our R01 5R01GM120033-04 for an
MALDI imaging source unit to be attached to an existing Q ExactiveMass Spectrometer (Ultra-High Mass
Range Hybrid Quadrupole-Orbitrap™) for spatial mapping of metabolites in thin tissue sections. Within our R01
award, to analyze NMR metabolome data we are developing two novel, powerful, and automated algorithms
that capitalize on recent developments in machine learning. We have coded these algorithms and tested their
sensitivity and specificity on both synthesized and real data. We then applied these methods to human disease
models and identified putative biomarkers. To validate these biomarkers, we have developed methods to
analyze animal tissues and human brain organoids using imaging mass spectrometry (IMS), which permits
spatial localization of metabolites without labeling. This targeted IMS metabolic phenotyping approach
complements our untargeted NMR methods: it allows us to determine whether the individual metabolites
identified by NMR represent bona fide biomarkers and to develop metabolic hypotheses for their association
with disease. We submit this request for imaging mass spectrometer hardware because a nearby IMS
facility on which we have relied has closed and no other IMS facility exists in greater Houston area.
Performing the IMS studies ourselves, with the help of collaborators, will accelerate our discovery about the
role small molecules and metabolites play in health and disease.
This instrument will help us better i) perform metabolome screens to identify the effects of SARS-CoV-2 on
neural cell types in human brain organoid models; ii) perform high-throughput drug screening to stimulate
neural stem cells to produce new neurons in the brain organoid models to regenerate damaged tissue; and iii)
use our NMR algorithms to develop a protocol for quantitative imaging. None of these studies will be possible
without the imaging mass spectrometer. Given our access to state-of-the-art equipment, data-collection
expertise, and new analytical algorithms that are especially sensitive and specific to NMR spectral data, we are
uniquely positioned to advance biomarker and diagnostics tools and screening methods for metabolites and
synthetic small molecules. Using an imaging mass spectrometer to map metabolite distribution may help us
discover diagnostic and prognostic biomarkers not only for SARS-CoV-2, but for a broad spectrum of brain
disorders that lead to neurodegeneration. Such broad usage of our platform would be transformative for
neuroscientists, neurologists, and their patients.
摘要
针对NOT-GM-20-013,我们要求对我们的R01 5R01GM120033-04进行补充
将MALDI成像源单元连接到现有的Q Exactive质谱仪(超高质量
Range混合四极轨道™)用于薄层组织切片中代谢物的空间映射。在我们的R01中
为了分析核磁共振代谢组数据,我们正在开发两种新的、强大的、自动化的算法
这利用了机器学习的最新发展。我们已经对这些算法进行了编码并测试了它们的
对合成数据和真实数据的敏感性和特异性。然后,我们将这些方法应用于人类疾病。
模型并确定了可能的生物标志物。为了验证这些生物标记物,我们已经开发了方法来
使用成像质谱仪(IMS)分析动物组织和人脑有机化合物,这允许
代谢物的空间定位而无需标记。这种有针对性的IMS代谢表型方法
补充了我们的非靶向核磁共振方法:它允许我们确定单个代谢物是否
通过核磁共振鉴定代表真正的生物标志物,并为它们之间的关联开发代谢假说
带着疾病。我们提交此成像质谱仪硬件申请是因为附近的IMS
我们所依赖的设施已经关闭,大休斯顿地区不存在其他IMS设施。
在合作者的帮助下,我们自己进行IMS研究,将加速我们对
小分子和代谢物在健康和疾病中的作用。
这台仪器将帮助我们更好地i)进行代谢组筛查,以确定SARS-CoV-2对
人脑器官模型中的神经细胞类型;ii)进行高通量药物筛选以刺激
神经干细胞在大脑器官模型中产生新的神经元,以再生受损组织;以及iii)
使用我们的核磁共振算法来开发一种定量成像协议。所有这些研究都不可能实现
没有成像质谱仪。鉴于我们可以使用最先进的设备,数据收集
专业知识和对核磁共振光谱数据特别敏感和特定的新分析算法,我们是
独一无二地定位于先进的生物标记物和代谢物的诊断工具和筛选方法
合成的小分子。使用成像质谱仪绘制代谢物分布图可能会帮助我们
不仅发现SARS-CoV-2的诊断和预后生物标志物,而且发现广泛的脑部生物标志物
导致神经退化的紊乱。如此广泛地使用我们的平台将对
神经学家、神经学家和他们的病人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhandong Liu其他文献
Zhandong Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhandong Liu', 18)}}的其他基金
Advanced Computational Approaches for NMR Data-mining
NMR 数据挖掘的高级计算方法
- 批准号:
10372268 - 财政年份:2017
- 资助金额:
$ 20.96万 - 项目类别:
Biomarker discovery of Alzheimer's disease trajectory using NMR platform
使用 NMR 平台发现阿尔茨海默病轨迹的生物标志物
- 批准号:
10394015 - 财政年份:2017
- 资助金额:
$ 20.96万 - 项目类别:
Advanced Computational Approaches for NMR Data-mining
NMR 数据挖掘的高级计算方法
- 批准号:
9889134 - 财政年份:2017
- 资助金额:
$ 20.96万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 20.96万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 20.96万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 20.96万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 20.96万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 20.96万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 20.96万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 20.96万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant