The role of Grp75 in supercomplex assembly and neurodegeneration

Grp75 在超复合物组装和神经退行性变中的作用

基本信息

  • 批准号:
    9762142
  • 负责人:
  • 金额:
    $ 28.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Emerging evidence supports the proposition that the mitochondrial respiratory chain (MRC) functions via organized multicomplex structures called supercomplexes. However the dynamics and regulation of supercomplex assembly have not been fully investigated. In particular, hardly any regulatory protein factors involved in supercomplex assembly have been identified. Our long term goal is to understand the dynamics of mitochondrial respiratory machinery and its underling regulatory mechanism. The objective of this particular application is to determine if the mitochondrial chaperon, 75 kDa glucose regulated protein (Grp75) plays a role in regulating supercomplex assembly and further to identify additional protein factors involved in this important process. The study of mammalian respiratory supercomplex assembly has been difficult since common yeast systems, which could be utilized as a powerful genetics system to identify putative regulatory factors, lack Complex I an essential component of mammalian supercomplexes. We have previously established an efficient method to isolate cells carrying mitochondrial DNA (mtDNA) mutations and further generated several cell models with regulated/altered supercomplex assembly, probably due to the enhanced/stabilized interactions between supercomplexes and regulative factor(s). Characterizations of these cell lines employing both molecular and proteomics approaches have implicated the molecular chaperone Grp75 supercomplex assembly. Interesting Grp 75 has previous been implicated in Parkinson's diseases (PD) due to 1). Grp 75 mutations have been identified in PD patients; 2) Low Grp 75 expression was found in brains of PD patients; 3). Our preliminary studies showed heterozygous Grp75 mice exhibited lower motor activities associated with defective supercomplex assembly. The central hypothesis for this application is that Grp75 is an essential part of machinery which regulates the assembly of supercomplexes, and defective of supercomplex assembly associated with deficient Grp 75 would lead to neuro-degeneration. To test this hypothesis, we propose to pursue the following three specific aims: 1) Characterize the role of Grp75 in supercomplex assembly. In particular, we will follow the step-wise assembly and degradation of individual complexes and supercomplexes in presence and absence of Grp75 with newly developed approaches in the lab; 2) Determine the regulatory mechanisms of Grp75 on supercomplex by Identify novel protein factors involved in regulating supercomplex assembly. With proteomic analysis of proteins interacting with Grp75 and Complex I containing supercomplexes in the cell models with regulated/altered supercomplex assembly, we aim to isolate novel protein factors involved in regulating supercomplex assembly. 3) Characterize the mouse models with altered expression of Grp75. The implications of defective supercomplex dynamics in neuronal degeneration will be further explored in heterozygous and neuronal-specific Grp75 knockout mouse models. We will investigate the underlying molecular pathways derived from Grp75 defect to supercomplex deficiency to neuronal degeneration. The approach is innovative, because it combines our unique cell models exhibiting upregulated supercomplex dynamics with newly-developed analytical methods to allow understanding of the complexity of respiratory supercomplex assembly. The establishment of novel mouse models with defective supercomplex dynamics should open new possibilities to study bioenergetics in neuronal system and neuro-degeneration. We believe that we are in a strong position to characterize respiratory supercomplex assembly. The research is significant, because elucidating this mechanism could provide new insights into the regulation of oxidative phosphorylation machinery. In addition, we anticipate our work will also help to identify novel risk genes involved in neurodegenerative diseases associated with mitochondrial dysfunction.
新兴证据支持线粒体呼吸链(MRC)通过 有组织的多重复合结构称为超复合物。但是,动态和调节 超复合组件尚未得到充分研究。特别是,几乎没有任何调节蛋白质因子 已经确定了参与超复合组装。我们的长期目标是了解 线粒体呼吸机械及其底底调节机制。这个特定的目的 应用是确定线粒体伴侣是否75 kDa葡萄糖调节蛋白(GRP75)起作用 在调节超复合组装并进一步确定这一重要的涉及的其他蛋白质因素 过程。自普通酵母以来 系统可以用作强大的遗传学系统来识别推定的监管因素,缺乏 复杂I是哺乳动物超复合物的重要组成部分。我们以前已经建立了 有效的方法隔离携带线粒体DNA(mtDNA)突变的细胞并进一步产生了几个 具有调节/更改超复合组件的细胞模型,可能是由于增强/稳定的 超复合物与调节因子之间的相互作用。这些细胞系的特征 分子和蛋白质组学方法都暗示了分子伴侣GRP75超复合物 集会。有趣的GRP 75以前涉及帕金森氏病(PD),这是由于1)。 GRP 75 PD患者已经确定了突变。 2)在PD患者的大脑中发现低GRP 75表达; 3)。 我们的初步研究表明,杂合的GRP75小鼠表现出与 有缺陷的超复合组件。该应用程序的中心假设是GRP75是必不可少的部分 调节超级复合物和超复合组件缺陷的机械 与缺乏GRP 75相关的将导致神经脱生。为了检验这一假设,我们建议 追求以下三个特定目的:1)表征GRP75在超复合组装中的作用。在 特别是,我们将遵循单个复合物和超复合物的逐步组装和降解 在实验室中新开发的方法的存在和不存在GRP75的情况下; 2)确定调节 通过识别与调节超复合物有关的新蛋白质因子,GRP75在超复合物上的机制 集会。蛋白质分析与GRP75和复合物I相互作用的蛋白质组学分析 具有调节/改变超级复杂组件的细胞模型中的超复合物,我们旨在隔离新型 涉及调节超复合组装的蛋白质因子。 3)用更改的鼠标模型表征 GRP75的表达。有缺陷的超复合动力学在神经元变性中的含义将是 进一步在杂合和神经元特异性GRP75敲除小鼠模型中进行了探索。我们将调查 从GRP75缺陷到超复合缺陷到神经元的基本分子途径 退化。该方法具有创新性,因为它结合了我们独特的细胞模型上调 具有新开发的分析方法的超复合动力学,以了解 呼吸超复合组件。建立具有有缺陷超复合的新型鼠标模型 动力学应为研究神经元系统和神经脱生的生物能学开辟新的可能性。 我们认为,我们处于表征呼吸超超复合组件的强烈位置。研究 很重要,因为阐明这种机制可以为调节氧化的调节提供新的见解。 磷酸化机制。此外,我们预计我们的工作还将有助于识别新型风险基因 参与与线粒体功能障碍相关的神经退行性疾病。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yidong Bai其他文献

Yidong Bai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yidong Bai', 18)}}的其他基金

The mitochondrial aspects of health disparity of hepatocellular carcinoma in Hispanic population
西班牙裔人群肝细胞癌健康差异的线粒体方面
  • 批准号:
    10729283
  • 财政年份:
    2023
  • 资助金额:
    $ 28.98万
  • 项目类别:
Characterization the disruption of mitochondrial function and induction of oxidative stress by SARS-CoV2
SARS-CoV2 对线粒体功能的破坏和氧化应激诱导的表征
  • 批准号:
    10510963
  • 财政年份:
    2022
  • 资助金额:
    $ 28.98万
  • 项目类别:
Characterization the disruption of mitochondrial function and induction of oxidative stress by SARS-CoV2
SARS-CoV2 对线粒体功能的破坏和氧化应激诱导的表征
  • 批准号:
    10640165
  • 财政年份:
    2022
  • 资助金额:
    $ 28.98万
  • 项目类别:
Characterization the disruption of mitochondrial function and induction of oxidative stress by SARS-CoV2
SARS-CoV2 对线粒体功能的破坏和氧化应激诱导的表征
  • 批准号:
    10874033
  • 财政年份:
    2022
  • 资助金额:
    $ 28.98万
  • 项目类别:
Regulation of mitochondrial respiratory complex I dynamics
线粒体呼吸复合物 I 动力学的调节
  • 批准号:
    8762078
  • 财政年份:
    2014
  • 资助金额:
    $ 28.98万
  • 项目类别:
Regulation of mitochondrial respiratory complex I dynamics
线粒体呼吸复合物 I 动力学的调节
  • 批准号:
    8898851
  • 财政年份:
    2014
  • 资助金额:
    $ 28.98万
  • 项目类别:
Regulation of mitochondrial respiratory complex I
线粒体呼吸复合物 I 的调节
  • 批准号:
    8129567
  • 财政年份:
    2010
  • 资助金额:
    $ 28.98万
  • 项目类别:
Regulation of mitochondrial respiratory complex I
线粒体呼吸复合物 I 的调节
  • 批准号:
    8031712
  • 财政年份:
    2010
  • 资助金额:
    $ 28.98万
  • 项目类别:
Role of Mitochondrial DNA Mutations in Aging in Neuronal Cells
线粒体 DNA 突变在神经细胞衰老中的作用
  • 批准号:
    7191724
  • 财政年份:
    2006
  • 资助金额:
    $ 28.98万
  • 项目类别:
Role of Mitochondrial DNA Mutations in Aging in Neuronal Cells
线粒体 DNA 突变在神经细胞衰老中的作用
  • 批准号:
    7371075
  • 财政年份:
    2006
  • 资助金额:
    $ 28.98万
  • 项目类别:

相似国自然基金

纳米稀土CeO2在土壤-动物体系中的形态转化、累积分布及毒性作用机制
  • 批准号:
    41877500
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
miR-34c在保护高糖诱导的VSMCs早衰并延缓糖尿病血管老化与钙化中的作用及机制
  • 批准号:
    81770833
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
缝隙连接蛋白26在老年性耳聋中的表达及其甲基化作用机制研究
  • 批准号:
    81500795
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
研究细胞/组织器官衰老与机体衰老关联机制的条件性敲入小鼠模型的建立与分析
  • 批准号:
    81571374
  • 批准年份:
    2015
  • 资助金额:
    120.0 万元
  • 项目类别:
    面上项目
改善年龄老化导致下肢新生血管生成障碍的实验研究
  • 批准号:
    81070257
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mitochondrial regulation of nociceptor function
伤害感受器功能的线粒体调节
  • 批准号:
    10644865
  • 财政年份:
    2023
  • 资助金额:
    $ 28.98万
  • 项目类别:
Novel mitochondria-to-lysosome crosstalk contributes to lysosomal dysfunction during aging
新型线粒体与溶酶体串扰导致衰老过程中溶酶体功能障碍
  • 批准号:
    10723050
  • 财政年份:
    2023
  • 资助金额:
    $ 28.98万
  • 项目类别:
Multimodal control of mitochondrial energetics to shape biological aging
线粒体能量的多模式控制塑造生物衰老
  • 批准号:
    10864185
  • 财政年份:
    2023
  • 资助金额:
    $ 28.98万
  • 项目类别:
Nicotinamide nucleotide transhydrogenase and bioenergetic metabolism in complex I defective cardiac mitochondria
烟酰胺核苷酸转氢酶和复合物 I 缺陷心脏线粒体中的生物能代谢
  • 批准号:
    10360118
  • 财政年份:
    2022
  • 资助金额:
    $ 28.98万
  • 项目类别:
Role of DJ1 in mitochondrial biogenergetics and neuronal metabolism
DJ1 在线粒体生物发生学和神经元代谢中的作用
  • 批准号:
    10434136
  • 财政年份:
    2021
  • 资助金额:
    $ 28.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了