Development of a Multi-scale Mathematical Model for Chip-based Chromatography

芯片色谱多尺度数学模型的开发

基本信息

  • 批准号:
    9762100
  • 负责人:
  • 金额:
    $ 7.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-10 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Title: Development of a Multi-scale Mathematical Model for Chip-based Chromatography ABSTRACT The goal of this application is to develop a multi-scale mathematical model for chip-based Capillary Electrokinetic Chromatography (CEC) systems with applications to point-of-care technologies. Arising from the rapid growth of the number of samples to analyze and of their complexity on a lab-on-a-chip platform, effective and efficient chemical and biochemical separation becomes a pivotal element of lab-on-a-chip systems to achieve the goal of fast, high-throughput, reliable, and cost-effective operations promised by point-of-care technologies. CEC has both the efficiency of the Capillary Electrophoresis (CE) and the selectivity and sample capacity of the packed High Performance Liquid Chromatography (HPLC). CEC appears to be the simplest answer to realize fast and high-efficiency separation. However, one main issue that the driven flow is coupled to the properties of the column makes independent optimization of selectivity and flow generation impossible, preventing the widely industrial implementation of CEC. Therefore, a mathematical modeling tool capable of predicting the separation process, in advance, becomes critical to fully explore and exploit the potential of CEC systems. Nowadays, to understand the underlying physics, numerical simulation becomes one of the most important tools. It is particularly essential for CEC systems as the simultaneous optimization of both selectivity and flow field is challenging for experimental studies alone. But often direct numerical simulations are time- consuming, costly, and usually only applied for relatively short columns due to problem complexity. Thus to overcome the aforementioned shortcomings associated with direct numerical simulations, we propose to develop a multi-scale mathematical simulation tool to reduce the computational cost by many orders of magnitude. Numerical simulation is a key modern design tool as well. Computational studies can facilitate and speed up the design process by saving the time and cost to narrow down the optimal design solution via virtual prototyping of systems prior to fabrication of prototypes.
题目:芯片色谱的多尺度数学模型的发展

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Zhao其他文献

Hui Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Zhao', 18)}}的其他基金

Durable Self-cleaning Fluorinated Graphene Oxide Coated N95 Respirators
耐用自清洁氟化氧化石墨烯涂层 N95 呼吸器
  • 批准号:
    10284378
  • 财政年份:
    2021
  • 资助金额:
    $ 7.18万
  • 项目类别:
Durable Self-cleaning Fluorinated Graphene Oxide Coated N95 Respirators
耐用自清洁氟化氧化石墨烯涂层 N95 呼吸器
  • 批准号:
    10493058
  • 财政年份:
    2021
  • 资助金额:
    $ 7.18万
  • 项目类别:
Beyond the Poisson-Nernst-Planck Model: The Impacts of Ion Specificity and Electrostatic Correlations on Biological Systems
超越泊松-能斯特-普朗克模型:离子特异性和静电相关性对生物系统的影响
  • 批准号:
    8957839
  • 财政年份:
    2015
  • 资助金额:
    $ 7.18万
  • 项目类别:
Mathematical Modeling of Biomolecule Translocation through Nanopores
通过纳米孔的生物分子易位的数学模型
  • 批准号:
    8228244
  • 财政年份:
    2012
  • 资助金额:
    $ 7.18万
  • 项目类别:
Mathematical Modeling of Biomolecule Translocation through Nanopores
通过纳米孔的生物分子易位的数学模型
  • 批准号:
    8424268
  • 财政年份:
    2012
  • 资助金额:
    $ 7.18万
  • 项目类别:

相似海外基金

Fine Structure of Blood Capillaries and Striated Muscle in Fish
鱼类毛细血管和横纹肌的精细结构
  • 批准号:
    6009133
  • 财政年份:
    1960
  • 资助金额:
    $ 7.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了