Erythrocyte Subversion by Malaria Parasite Exported Effectors
疟疾寄生虫输出效应子引起的红细胞颠覆
基本信息
- 批准号:9762189
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseArchitectureBiochemistryBloodCRISPR interferenceCRISPR/Cas technologyCause of DeathCellsCessation of lifeCharacteristicsChimera organismComplementComplexComputer SimulationCysteineDevelopmentDevelopment PlansDiseaseDrug DesignEngineeringEnsureEnzymesErythrocytesEscherichia coliEventGene ExpressionGenesGeneticGenetic ScreeningGoalsHeat shock proteinsHost DefenseHumanIn VitroInfectionInvadedKnock-outLengthMalariaMapsMass Spectrum AnalysisMediatingMembraneModificationMolecularMolecular ChaperonesMutationN-terminalNaturePaperParasitesParasitic DiseasesPathologicPathologyPathway interactionsPeptide HydrolasesPlasmodiumPlasmodium falciparumProcessPropertyProtein Export PathwayProteinsProteomicsRecombinantsRegulationReporterResearchResearch PersonnelResolutionRoleStructural ProteinStructureSubstrate SpecificitySystemTXN geneTestingTherapeuticVacuoleVirulenceWorkaptamerbasecareercareer developmentcrosslinkexperienceexperimental studyforward geneticsknock-downmutantnew therapeutic targetnovelnovel therapeuticspreventprotein Eprotein functionprotein structureprotein transportreverse geneticstherapeutic targettool
项目摘要
Project Summary/Abstract
Malaria remains one of the most devastating parasitic diseases in the world with the vast
majority of deaths caused by Plasmodium falciparum. The pathology of the disease results
exclusively from the blood-stage of the infection during which parasites invade and multiply
within host erythrocytes. To establish this intracellular niche, P. falciparum imposes striking
modifications to the erythrocyte through export of effector proteins but the export mechanism is
poorly understood and the effector functions essential to parasite survival remain largely
unknown. Export into the red blood cell requires crossing a vacuole membrane surrounding the
parasite, a translocation event that depends upon the Plasmodium translocon of exported
proteins (PTEX). In a recent paper, the candidate showed that inactivation of heat shock protein
101 (HSP101), a AAA+ ATPase component of PTEX, results in a complete block in protein
export and parasite death. Related AAA+ proteins can unfold and directionally thread substrates
through a central channel, suggesting HSP101 may drive recognition of effector proteins and
power the translocation process. The proposed career development plan aims to dissect the
role of HSP101/PTEX in export and to identify key exported effectors that enable the parasite to
survive within the erythrocyte. Specific Aim 1 seeks to understand the substrate recognition and
catalytic properties of recombinant HSP101 and to dissect the role of HSP101 in protein export
within intact parasites. Specific Aim 2 will use genetic and proteomic approaches to define the
function of additional PTEX components and a cross-linking mass spectrometry approach to
map the architecture of the complex. Specific Aim 3 will analyze the function of exported
effectors implicated in parasite survival within the erythrocyte using forward and reverse
genetics as well as proteomic approaches. PTEX is an exciting new drug target and the
proposed experiments will reveal key mechanistic information about the role of this export
machinery as a necessary basis for rational drug design. Furthermore, identification of key
exported proteins with roles in parasite survival may provide needed additional therapeutic
targets. Collectively, this work will further our understanding of how the malaria parasite
subverts its erythrocyte host cell and support development of new tools for control of malaria
disease. The experience and research tools acquired in the process will propel the candidate
into an established career as an independent investigator.
项目总结/摘要
疟疾仍然是世界上最具破坏性的寄生虫病之一,
大多数死亡是由恶性疟原虫引起的。疾病的病理结果
仅从血液阶段的感染,在此期间寄生虫入侵和繁殖
在宿主红细胞内。为了建立这种细胞内的生态位,恶性疟原虫施加了惊人的
通过输出效应蛋白修饰红细胞,但输出机制是
对寄生虫生存所必需的效应器功能仍然很大程度上
未知输出到红细胞需要穿过围绕在红细胞周围的空泡膜。
寄生虫,一个易位事件,取决于疟原虫易位输出
蛋白质(PTEX)。在最近的一篇论文中,候选人表明,热休克蛋白的失活
101(HSP 101),PTEX的AAA+ ATP酶组分,导致蛋白质的完全阻断,
输出和寄生虫死亡。相关的AAA+蛋白可以解折叠和定向穿线底物
通过中央通道,表明HSP 101可能驱动效应蛋白的识别,
为转移过程提供动力拟议的职业发展计划旨在剖析
HSP 101/PTEX在输出中的作用,并确定使寄生虫能够
在红细胞内存活。具体目标1旨在了解底物识别,
重组HSP 101的催化特性,并剖析HSP 101在蛋白输出中的作用
完整的寄生虫体内具体目标2将使用遗传和蛋白质组学方法来定义
额外的PTEX组分的功能和交联质谱法,
绘制建筑群的结构图具体目标3将分析导出的功能
使用正向和反向的红细胞内寄生虫存活的相关效应物
遗传学和蛋白质组学方法。PTEX是一个令人兴奋的新药物靶点,
所提出的实验将揭示关于这种输出的作用的关键机制信息
机械作为合理药物设计的必要基础。此外,识别密钥
在寄生虫存活中起作用的输出蛋白质可以提供所需的额外治疗
目标的总的来说,这项工作将进一步加深我们对疟疾寄生虫
破坏其红细胞宿主细胞,并支持开发控制疟疾的新工具
疾病在此过程中获得的经验和研究工具将推动候选人
成为一名独立调查员
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The PTEX Pore Component EXP2 Is Important for Intrahepatic Development during the Plasmodium Liver Stage.
- DOI:10.1128/mbio.03096-22
- 发表时间:2022-12-20
- 期刊:
- 影响因子:6.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Josh Ryan Beck其他文献
Josh Ryan Beck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Josh Ryan Beck', 18)}}的其他基金
PTEX mechanism in malaria parasite effector protein export and host cell subversion
疟原虫效应蛋白输出和宿主细胞颠覆中的 PTEX 机制
- 批准号:
10729431 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
UIS2 function in establishing transport mechanisms at the malaria parasite-host cell interface
UIS2 在疟疾寄生虫-宿主细胞界面建立转运机制中发挥作用
- 批准号:
10576087 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship














{{item.name}}会员




