PTEX mechanism in malaria parasite effector protein export and host cell subversion
疟原虫效应蛋白输出和宿主细胞颠覆中的 PTEX 机制
基本信息
- 批准号:10729431
- 负责人:
- 金额:$ 36.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AntimalarialsBiologyBloodCellsComplexCryoelectron MicroscopyCuriositiesDataDevelopmentDiseaseDrug resistanceErythrocytesEventHepatocyteHost DefenseInfectionLabelLicensingLife StyleLinkLiverMalariaMediatingMembraneMembrane ProteinsMethodsModelingMolecular ChaperonesMutagenesisN-terminalNutrientParasitesParasitic DiseasesPathogenesisPathogenicityPathologicPathway interactionsPermeabilityPlasmodiumProcessProtein Export PathwayProteinsPublic HealthRegulationResistanceRoleSecureSiteStructureSystemTestingTimeTransmembrane TransportVacuolecombatconditional mutantcrosslinkfitnessin vivointrahepaticknock-downliver infectionnew therapeutic targetnovelnovel therapeutic interventionnovel therapeuticsobligate intracellular parasitepathogenplasmepsinprotein complexprotein functionunfoldaseunnatural amino acids
项目摘要
Project Summary
Malaria disease remains a serious public health problem. Progress in Malaria control has slowed
in recent years while resistance to frontline antimalarials is emerging in the most afflicted regions,
underscoring a pressing need for deciphering fundamental parasite biology to provide novel
therapeutic strategies. This obligate intracellular parasite exports a battery of effector proteins out
of a vacuolar niche to drastically remodel its host cell, a process that depends on the Plasmodium
Translocon of EXported proteins (PTEX). PTEX is built on a vacuole nutrient pore formed by
EXP2 which is further functionalized by the adaptor PTEX150 and AAA+ chaperone HSP101 to
form the effector translocon. PTEX has emerged as a novel drug target owing to its essential role
in blood stage parasite survival and disease pathogenesis but it is unknown how translocon cargo
is identified or how the complex is assembled and regulated to perform its function. Recent results
suggest HSP101 identifies export-destine cargo in the parasite ER and then brings it to the
vacuole where assembly into the PTEX complex stimulates HSP101’s unfolding activity to drive
membrane translocation into the erythrocyte. Importantly, while a similar export process is
expected to occur in the initial liver infection that establishes the blood stage, only EXP2 and
PTEX150 are present in the intrahepatic vacuole but not HSP101. This implies that PTEX
components mediate protein export into both erythrocytes and hepatocytes but that mechanistic
distinctions have evolved to meet the demands of subverting these remarkably different host cells.
In support of this, we recently determined that EXP2 is critical to intrahepatic parasite
development, clearly showing for the first time that PTEX components are also functional in the
liver stage vacuole. We hypothesize that EXP2/PTEX150 constitutes a minimal effector
translocon for vertebrate host cell subversion that is further adapted by HSP101 to meet
the unique demands on protein export to remodel the erythrocyte. This proposal will answer
key questions about the PTEX export mechanism to determine the basis for host cell subversion
and provide new targets to combat this devastating pathogen. Aim 1 will determine the basis for
PTEX cargo selection in the blood stage by dissecting the ER-localized function of HSP101 along
with the role of a newly discovered HSP101-interacting ER protein. Aim 2 will define features
required to form PTEX and identify the interaction that stimulates HSP101 unfolding activity in the
assembled translocon complex using a photoreactive unnatural amino acid crosslinking system.
Finally, Aim 3 will uncover the HSP101-independent function of EXP2/PTEX150 in the liver and
identify novel exported effectors that enable hepatocyte subversion to establish the blood stage.
项目摘要
疟疾仍然是一个严重的公共卫生问题。疟疾控制进展缓慢
近年来,虽然在最受影响的地区出现了对一线抗疟药物的耐药性,
强调迫切需要破译基本的寄生虫生物学,以提供新的
治疗策略这种专性细胞内寄生虫输出一组效应蛋白
一个空泡生态位,以彻底改造其宿主细胞,这一过程取决于疟原虫
输出蛋白的转位子(PTEX)。PTEX是建立在一个液泡营养孔形成的,
EXP 2,其被衔接子PTEX 150和AAA+伴侣HSP 101进一步功能化,
形成效应子转位子。PTEX由于其重要的作用而成为一种新的药物靶点
在血液阶段寄生虫存活和疾病发病机制,但不知道如何易位货物
或复合物如何组装和调节以执行其功能。最近的结果
建议HSP 101识别寄生虫ER中的出口目的地货物,然后将其带到
液泡中组装成PTEX复合物刺激HSP 101的展开活性,以驱动
膜移位进入红细胞。重要的是,虽然类似的出口过程是
预期发生在确定血液分期的初始肝脏感染中,仅EXP 2和
PTEX 150存在于肝内空泡中,而HSP 101不存在。这意味着PTEX
组分介导蛋白质输出到红细胞和肝细胞中,
为了满足破坏这些显著不同的宿主细胞的需求,已经进化出了这些差异。
为了支持这一点,我们最近确定EXP 2对肝内寄生虫至关重要,
开发,首次清楚地表明,PTEX组件也在
肝期空泡。我们假设EXP 2/PTEX 150构成最小效应子,
用于脊椎动物宿主细胞颠覆的易位子,其进一步被HSP 101适应以满足
对蛋白质输出以重塑红细胞的独特需求。这项提案将回答
关于PTEX输出机制的关键问题,以确定宿主细胞颠覆的基础
并为对抗这种毁灭性的病原体提供新的目标。目标1将确定
通过剖析HSP 101沿着的ER定位功能在血液阶段中选择PTEX货物
与新发现的HSP 101相互作用的ER蛋白的作用。目标2将定义功能
需要形成PTEX并鉴定刺激HSP 101在细胞中展开活性的相互作用。
使用光反应性非天然氨基酸交联系统组装的易位子复合物。
最后,目标3将揭示EXP 2/PTEX 150在肝脏中的HSP 101非依赖性功能,
鉴定使肝细胞颠覆能够建立血液阶段的新型输出效应物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Josh Ryan Beck其他文献
Josh Ryan Beck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Josh Ryan Beck', 18)}}的其他基金
UIS2 function in establishing transport mechanisms at the malaria parasite-host cell interface
UIS2 在疟疾寄生虫-宿主细胞界面建立转运机制中发挥作用
- 批准号:
10576087 - 财政年份:2022
- 资助金额:
$ 36.7万 - 项目类别:
Erythrocyte Subversion by Malaria Parasite Exported Effectors
疟疾寄生虫输出效应子引起的红细胞颠覆
- 批准号:
9762189 - 财政年份:2015
- 资助金额:
$ 36.7万 - 项目类别:
相似国自然基金
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Fibroblast-derived laminin regulates blood-brain barrier integrity and fibroblast biology in hemorrhagic brain
成纤维细胞衍生的层粘连蛋白调节出血脑中的血脑屏障完整性和成纤维细胞生物学
- 批准号:
10749280 - 财政年份:2023
- 资助金额:
$ 36.7万 - 项目类别:
Predicting iron recovery after blood donation: comparing machine learning and biology-informed modeling approaches
预测献血后铁的恢复:比较机器学习和生物学建模方法
- 批准号:
475806 - 财政年份:2022
- 资助金额:
$ 36.7万 - 项目类别:
Studentship Programs
Project 1- Role of Kindlins in Blood and Vascular Cell Biology
项目 1 - Kindlins 在血液和血管细胞生物学中的作用
- 批准号:
10661631 - 财政年份:2021
- 资助金额:
$ 36.7万 - 项目类别:
Project 1- Role of Kindlins in Blood and Vascular Cell Biology
项目 1 - Kindlins 在血液和血管细胞生物学中的作用
- 批准号:
10471912 - 财政年份:2021
- 资助金额:
$ 36.7万 - 项目类别:
Project 1- Role of Kindlins in Blood and Vascular Cell Biology
项目 1 - Kindlins 在血液和血管细胞生物学中的作用
- 批准号:
10268697 - 财政年份:2021
- 资助金额:
$ 36.7万 - 项目类别:
Utilizing Dendritic Cell Biology to Characterize the Innate Immune Response to Blood Coagulation Proteins
利用树突状细胞生物学来表征对凝血蛋白的先天免疫反应
- 批准号:
10580074 - 财政年份:2020
- 资助金额:
$ 36.7万 - 项目类别:
Utilizing Dendritic Cell Biology to Characterize the Innate Immune Response to Blood Coagulation Proteins
利用树突状细胞生物学来表征对凝血蛋白的先天免疫反应
- 批准号:
10456679 - 财政年份:2020
- 资助金额:
$ 36.7万 - 项目类别:
Utilizing Dendritic Cell Biology to Characterize the Innate Immune Response to Blood Coagulation Proteins
利用树突状细胞生物学来表征对凝血蛋白的先天免疫反应
- 批准号:
10112960 - 财政年份:2020
- 资助金额:
$ 36.7万 - 项目类别:
Utilizing Dendritic Cell Biology to Characterize the Innate Immune Response to Blood Coagulation Proteins
利用树突状细胞生物学来表征对凝血蛋白的先天免疫反应
- 批准号:
9883409 - 财政年份:2020
- 资助金额:
$ 36.7万 - 项目类别:














{{item.name}}会员




