Resolving and understanding the genomic basis of heterogeneous complex traits and disease
解决和理解异质复杂性状和疾病的基因组基础
基本信息
- 批准号:9764395
- 负责人:
- 金额:$ 33.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAnimal ModelCardiomyopathiesCatalogsCell physiologyClinicalCollaborationsCollectionComplexCoronary ArteriosclerosisDataData CollectionDiseaseEating DisordersFemaleGastrointestinal DiseasesGenesGenomicsGenotypeHeterogeneityIndividualInterventionKnowledgeLifeLinkMethodsOutcomePathway interactionsPhenotypePhysiologicalPhysiologyPopulationPrevalenceSex BiasSystemTestingTissuesVariantadvanced diseaseanalogautism spectrum disorderclinical phenotypecomputational suitecomputer frameworkdisease diagnosisdisorder riskdisorder subtypegenetic variantgenomic datagenomic profilesgenomic signaturegenomic variationhuman diseasehuman modelin vivoinsightmalenovelprecision medicinepregnancy disordersextrait
项目摘要
ABSTRACT
Over the last decade, numerous large-scale biomedical studies have helped catalog hundreds of genomic
variants and physiological-clinical phenotypes associated with a range of complex traits and diseases. These
catalogs are now exposing wide chasms in our understanding of the mechanistic relationships between
genomic variation, cellular processes, tissue function, and trait variation – knowledge that is crucial for
advancing disease diagnosis and intervention. We develop and apply computational data-driven approaches to
bridge these gaps and help resolve, understand, and tackle the heterogeneity of complex traits and diseases.
We are specifically focusing on three key questions: 1) Each disease is not a single well-defined condition. Can
we deconvolve complex disorders into subtypes defined by shared functional dysregulations, and characterize
novel genes/mechanisms underlying each subtype? 2) Most diseases vary in prevalence and impact between
males and females, and across life stages. Can we delineate the genomic basis of differences in tissue
physiology and disease between sexes and across ages? 3) Choosing the right in vivo system to study human
diseases is hard due to murky relationships between phenotypes/genes in humans and model species. Can
we systematically identify functionally `analogous' genes, phenotypes, and conditions in model organisms for
studying specific facets of complex traits/diseases? To address these critical questions across diseases, we
will develop a suite of computational frameworks that integrate genomic data collections, fragmented prior
knowledge, and individual-/population-level genotypes-phenotypes. We will use this approach to systematically
unravel genomic signatures, pathways, and networks that help characterize mechanistic subtypes, age/sex
biases, and cross-species analogs of a wide range of diseases. We have established collaborations for
experimentally following-up our predictions for specific test cases including autism, gastrointestinal disorder,
coronary artery disease, cardiomyopathies, abnormal pregnancy, and eating disorders. Together, this
concerted effort will help us gain insights into the multi-scale mechanisms underlying heterogeneous traits and
diseases. In the long-term, our frameworks and mechanistic insights will enable us to link an individual's
genomic profiles to a precise assessment of her/his physiological traits, disease risks, and clinical outcomes.
ABSTRACT
Over the last decade, numerous large-scale biomedical studies have helped catalog hundreds of genomic
variants and physiological-clinical phenotypes associated with a range of complex traits and diseases. These
catalogs are now exposing wide chasms in our understanding of the mechanistic relationships between
genomic variation, cellular processes, tissue function, and trait variation – knowledge that is crucial for
advancing disease diagnosis and intervention. We develop and apply computational data-driven approaches to
bridge these gaps and help resolve, understand, and tackle the heterogeneity of complex traits and diseases.
We are specifically focusing on three key questions: 1) Each disease is not a single well-defined condition. Can
we deconvolve complex disorders into subtypes defined by shared functional dysregulations, and characterize
novel genes/mechanisms underlying each subtype? 2) Most diseases vary in prevalence and impact between
males and females, and across life stages. Can we delineate the genomic basis of differences in tissue
physiology and disease between sexes and across ages? 3) Choosing the right in vivo system to study human
diseases is hard due to murky relationships between phenotypes/genes in humans and model species. Can
we systematically identify functionally `analogous' genes, phenotypes, and conditions in model organisms for
studying specific facets of complex traits/diseases? To address these critical questions across diseases, we
will develop a suite of computational frameworks that integrate genomic data collections, fragmented prior
knowledge, and individual-/population-level genotypes-phenotypes. We will use this approach to systematically
unravel genomic signatures, pathways, and networks that help characterize mechanistic subtypes, age/sex
biases, and cross-species analogs of a wide range of diseases. We have established collaborations for
experimentally following-up our predictions for specific test cases including autism, gastrointestinal disorder,
coronary artery disease, cardiomyopathies, abnormal pregnancy, and eating disorders. Together, this
concerted effort will help us gain insights into the multi-scale mechanisms underlying heterogeneous traits and
diseases. In the long-term, our frameworks and mechanistic insights will enable us to link an individual's
genomic profiles to a precise assessment of her/his physiological traits, disease risks, and clinical outcomes.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arjun Krishnan其他文献
Arjun Krishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arjun Krishnan', 18)}}的其他基金
Mechanism-guided drug repurposing for host-directed therapy of infectious diseases using interpretable and integrative ML
使用可解释和集成的机器学习机制引导的药物再利用,用于针对宿主的传染病治疗
- 批准号:
10738676 - 财政年份:2022
- 资助金额:
$ 33.61万 - 项目类别:
Mechanism-guided drug repurposing for host-directed therapy of infectious diseases using interpretable and integrative ML
使用可解释和集成的机器学习机制引导的药物再利用,用于针对宿主的传染病治疗
- 批准号:
10442808 - 财政年份:2022
- 资助金额:
$ 33.61万 - 项目类别:
Mechanism-guided drug repurposing for host-directed therapy of infectious diseases using interpretable and integrative ML
使用可解释和集成的机器学习机制引导的药物再利用,用于针对宿主的传染病治疗
- 批准号:
10619589 - 财政年份:2022
- 资助金额:
$ 33.61万 - 项目类别:
Resolving and understanding the genomic basis of heterogeneous complex traits and diseases
解决和理解异质复杂性状和疾病的基因组基础
- 批准号:
10406616 - 财政年份:2018
- 资助金额:
$ 33.61万 - 项目类别:
Resolving and understanding the genomic basis of heterogeneous complex traits and disease
解决和理解异质复杂性状和疾病的基因组基础
- 批准号:
10226291 - 财政年份:2018
- 资助金额:
$ 33.61万 - 项目类别:
Resolving and understanding the genomic basis of heterogeneous complex traits and disease
解决和理解异质复杂性状和疾病的基因组基础
- 批准号:
10700497 - 财政年份:2018
- 资助金额:
$ 33.61万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Effect of tea flavonoids and low dose estrogen on bone metabolism in an animal model for age-related bone loss
茶黄酮和低剂量雌激素对年龄相关性骨质流失动物模型骨代谢的影响
- 批准号:
488140-2016 - 财政年份:2018
- 资助金额:
$ 33.61万 - 项目类别:
Postdoctoral Fellowships
The Structural and Metabolic Changes Associated with Ependymal Layer Disruption in the Age Continuum of Hydrocephalus - A Human and Animal Model Study
脑积水年龄连续体中与室管膜层破坏相关的结构和代谢变化 - 人类和动物模型研究
- 批准号:
376678 - 财政年份:2017
- 资助金额:
$ 33.61万 - 项目类别:
Studentship Programs
Effect of tea flavonoids and low dose estrogen on bone metabolism in an animal model for age-related bone loss
茶黄酮和低剂量雌激素对年龄相关性骨质流失动物模型骨代谢的影响
- 批准号:
488140-2016 - 财政年份:2017
- 资助金额:
$ 33.61万 - 项目类别:
Postdoctoral Fellowships
Effect of tea flavonoids and low dose estrogen on bone metabolism in an animal model for age-related bone loss
茶黄酮和低剂量雌激素对年龄相关性骨质流失动物模型骨代谢的影响
- 批准号:
488140-2016 - 财政年份:2016
- 资助金额:
$ 33.61万 - 项目类别:
Postdoctoral Fellowships
Animal model of impaired autoregulation for study of age related vascular cognitive impairment
用于研究年龄相关血管认知障碍的自动调节受损动物模型
- 批准号:
9197938 - 财政年份:2016
- 资助金额:
$ 33.61万 - 项目类别:
The domestic cat as an animal model for age-related neurofibrillary tangles
家猫作为年龄相关神经原纤维缠结的动物模型
- 批准号:
24780283 - 财政年份:2012
- 资助金额:
$ 33.61万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Identification of candidate genes responsible for an increased susceptibility of age-related macular degeneration using an animal model and its application to gene diagnosis.
使用动物模型鉴定导致年龄相关性黄斑变性易感性增加的候选基因及其在基因诊断中的应用。
- 批准号:
22591939 - 财政年份:2010
- 资助金额:
$ 33.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MT1-MMP-based Animal Model of Age-related Macular Degeneration (AMD)
基于 MT1-MMP 的年龄相关性黄斑变性 (AMD) 动物模型
- 批准号:
8101435 - 财政年份:2008
- 资助金额:
$ 33.61万 - 项目类别:
MT1-MMP-based Animal Model of Age-related Macular Degeneration (AMD)
基于 MT1-MMP 的年龄相关性黄斑变性 (AMD) 动物模型
- 批准号:
7481783 - 财政年份:2008
- 资助金额:
$ 33.61万 - 项目类别:
A novel molecular paradigm of age-related macular degeneration in view of the social trend in nocturnal: An approach using an animal model
鉴于夜间活动的社会趋势,年龄相关性黄斑变性的新分子范式:使用动物模型的方法
- 批准号:
20791248 - 财政年份:2008
- 资助金额:
$ 33.61万 - 项目类别:
Grant-in-Aid for Young Scientists (B)