A Biodegradable Vascular Coupling Device for End-to-End Anastomosis

用于端端吻合的可生物降解血管耦合装置

基本信息

  • 批准号:
    9764480
  • 负责人:
  • 金额:
    $ 71.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-22 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary The objective of Microsurgical Innovations (MSI) in this proposal is to develop a biodegradable vascular coupling device (VCD), which would replace the hand suturing technique currently used to connect arteries and veins in microvascular and macrovascular end-to-end vascular repair surgeries. Our device works for both arteries and veins and can rapidly connect the two vessel ends together in a watertight seal without leaving any foreign material in the lumen to come in contact with flowing blood. We have manufactured prototype devices using biodegradable poly(lactic acid-co-caprolactone) (PLACL (95% PLA and 5% caprolactone)) with no moving parts in multiple sizes to accommodate varying vessel size in a range of vascular repair scenarios). This device has similarities to the already available Synovis vein coupling device (now part of Baxter) in that it will be made of biocompatible materials, but significantly differs from the Synovis device in that it does not have any metallic parts, is completely biodegradable, can be used easily for both arteries and veins and the anastomosis can be performed much more rapidly. This approach would reduce the time required in the surgery suite, reduce costs associated with surgery, and reduce the likelihood of failure of the anastomosis, by minimizing human error and stenting open the anastomosis. The biodegradable device will be useful in cases of chronic need of increased blood flow requirement e.g. hypoxia or growing child. Our product will contain a sizing tool, inner ring between 1.0 mm to 4.00 mm at 0.5 mm intervals and a gap between the inner ring and outer ring ranging from 0.1 mm, 0.2 mm and 0.3 mm, and installation tools. The technology at the center of this proposal has been developed at the University of Utah and has been licensed to MSI, a recent spin-out company from the University. We have produced a series of prototypes between 1-7 mm size range that are applicable to microsurgery and have tested our device successfully in multiple animals for 1 to 3 month long studies. Multiple papers by our team have been published in the last few years. For successful commercialization of this device we need to (i) develop and characterize devices for small caliber vessels (customer need identified by interviewing over 70 surgeons), (ii) long term study (device degradation, intima to intima healing, patency), (iii) mold and tool development with manufacturing in GMP certified facilities, (iV) biocompatibility testing, and (V) 510 K application. Specific aims are geared towards moving MSI’s VCD through product commercialization pipeline as reflected by our research strategy. As part of state and university funded lean canvas cohorts, we conducted more than 100 interviews (>75 surgeons including 19 at the Mountain West Plastic Surgery Society meeting in March 2017 hosted by Jay Agarwal). We learned that the readiness of the device for market acceptance required that the overall size of the VCD be reduced by about 50%, that demonstration of 1.5 to 2.00 mm devices was needed, and comparison data with gold standards was desired. Our Aims for Phase II reflect this learning in addition to doing work necessary to obtain regulatory approval. Hypothesis 1.The biodegradable vascular coupling device can provide the necessary coupling strength in physiological conditions for 1.0 mm to 3.00 mm blood vessels. Specific Aim 1. To evaluate the functionality of vascular coupling devices 1.5 mm to 3.00 mm diameter ex vivo Hypothesis 2. Vascular anastomosis can be performed with the biodegradable vascular coupling device in vivo for small caliber vessels (1.5 mm to 3.00 mm diameter). The implantation will not affect blood vessel patency and no severe foreign body response will occur. Specific Aim 2. To evaluate the effectiveness and performance of small diameter biodegradable coupling devices in vivo. Hypothesis 3. Vascular anastomosis time with the biodegradable vascular coupling device will be lower than gold standard methods. Specific Aim 3. To evaluate the effectiveness and compare performance of the biodegradable coupling device in vivo with gold standards for larger diameter artery and vein (3.0 to 4.5 mm). Hypothesis 4. A. The PLA-based vascular coupling device can be manufactured using GMP certified facilities. B. The PLACL based vascular coupling device is biocompatible. Specific Aim 4. A. To manufacture vascular coupling device molds and parts. B. To conduct comprehensive biocompatibility testing with a third party (Nelson laboratories) for MSI’s vascular coupling device.
项目概要 显微外科创新公司 (MSI) 在该提案中的目标是开发一种可生物降解的血管耦合装置 (VCD),它将取代目前用于连接微血管和静脉中的动脉和静脉的手工缝合技术 大血管端对端血管修复手术。我们的设备适用于动脉和静脉,可以快速连接 两个容器以水密密封的方式连接在一起,不会在管腔中留下任何异物来接触 流动的血液。我们使用可生物降解的聚(乳酸-己内酯)(PLACL)制造了原型设备 (95% PLA 和 5% 己内酯)),多种尺寸均无活动部件,可适应各种尺寸的容器 血管修复场景)。该装置与现有的 Synovis 静脉耦合装置(现已成为 Baxter),因为它将由生物相容性材料制成,但与 Synovis 设备显着不同,因为它不 无金属部件,完全可生物降解,可轻松用于动脉、静脉及吻合术 可以更快地执行。这种方法将减少手术室所需的时间,降低成本 与手术相关,并通过最大限度地减少人为错误和支架置入来减少吻合失败的可能性 打开吻合口。可生物降解的装置在长期需要增加血流量的情况下将很有用 例如缺氧或成长中的孩子。我们的产品将包含一个定径工具,内圈在 1.0 毫米到 4.00 毫米之间,0.5 毫米 内圈和外圈之间的间隔和间隙为0.1毫米、0.2毫米和0.3毫米,以及安装工具。 该提案的核心技术是由犹他大学开发的,并已授权给 MSI, 一家最近从大学衍生出来的公司。我们生产了一系列尺寸范围在 1-7 毫米之间的原型 适用于显微外科手术,并已在多只动物身上成功测试了我们的设备,进行了 1 至 3 个月的研究。 我们团队在过去几年中发表了多篇论文。 为了该设备的成功商业化,我们需要 (i) 开发和表征小口径容器的设备 (通过采访 70 多名外科医生确定客户需求),(ii) 长期研究(设备退化、内膜到内膜 (iii) 模具和工具开发以及在 GMP 认证设施中制造,(iV) 生物相容性测试, (V) 510 K 申请。具体目标是通过产品商业化渠道推动 MSI 的 VCD 正如我们的研究策略所反映的那样。作为州和大学资助的精益画布队列的一部分,我们进行了超过 100 次采访(>75 名外科医生,其中 19 名参加了 2017 年 3 月主办的西山整形外科协会会议 杰·阿加瓦尔)。我们了解到,该设备要为市场接受做好准备,需要 VCD 的整体尺寸 减少约50%,需要1.5至2.00毫米器件的演示,以及与黄金的比较数据 需要标准。我们第二阶段的目标除了完成获得监管所需的工作外还反映了这种学习 赞同。 假设1.可生物降解的血管耦合装置能够提供生理所需的耦合强度 1.0毫米至3.00毫米血管的条件。 具体目标 1. 离体评估直径 1.5 mm 至 3.00 mm 的血管耦合装置的功能 假设2.可生物降解血管耦合装置可在体内对小血管进行血管吻合 口径容器(直径 1.5 毫米至 3.00 毫米)。植入不会影响血管通畅,无严重异物 身体就会发生反应。 具体目标 2. 评估小直径可生物降解耦合装置在体内的有效性和性能。 假设3.使用可生物降解血管耦合装置的血管吻合时间将低于金标准 方法。 具体目标 3. 评估可生物降解耦合装置的有效性并比较体内可生物降解耦合装置的性能 较大直径动脉和静脉(3.0 至 4.5 毫米)的金标准。 假设 4. A. 基于 PLA 的血管耦合装置可以使用 GMP 认证的设施进行制造。 B.PLACL 基于血管耦合装置具有生物相容性。 具体目标 4. A. 制造血管连接装置模具和零件。 B、全面开展 与第三方(尼尔森实验室)对 MSI 的血管耦合装置进行生物相容性测试。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compression of the vascular wall to create a friction fit in a vascular anastomotic coupler.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jayant Prasad Agarwal其他文献

Jayant Prasad Agarwal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jayant Prasad Agarwal', 18)}}的其他基金

Fluoridated scaffolds for the treatment of critical-size bone defects
用于治疗临界尺寸骨缺损的氟化支架
  • 批准号:
    10633345
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
  • 批准号:
    10015497
  • 财政年份:
    2020
  • 资助金额:
    $ 71.62万
  • 项目类别:
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
  • 批准号:
    10557062
  • 财政年份:
    2020
  • 资助金额:
    $ 71.62万
  • 项目类别:
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
  • 批准号:
    10162333
  • 财政年份:
    2020
  • 资助金额:
    $ 71.62万
  • 项目类别:
Intramedullary antibiotic therapy for the treatment of osteomyelitis
髓内抗生素疗法治疗骨髓炎
  • 批准号:
    9273890
  • 财政年份:
    2016
  • 资助金额:
    $ 71.62万
  • 项目类别:
Fat transplant for glitazone delivery and adiponectin production to inhibit breast cancer
脂肪移植用于格列酮输送和脂联素生产以抑制乳腺癌
  • 批准号:
    8958679
  • 财政年份:
    2015
  • 资助金额:
    $ 71.62万
  • 项目类别:
Efficacy of Local Tacrolimus Delivery in Allograft Nerve Transplantation
同种异体神经移植中他克莫司局部给药的疗效
  • 批准号:
    9137754
  • 财政年份:
    2015
  • 资助金额:
    $ 71.62万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了