Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
基本信息
- 批准号:10557062
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdhesionsAdipose tissueAdoptedAgeAlkaline PhosphataseAllograftingAnalysis of VarianceAnimalsAspirate substanceAutologous TransplantationAutopsyBiocompatible MaterialsBiologicalBiological AssayBiomedical EngineeringBlood VesselsBone Morphogenetic ProteinsBone RegenerationBone SubstitutesBone TissueBone TransplantationCadaverCaliberCell FractionCell SurvivalCellsClinicalCollagenCompressive StrengthConfocal MicroscopyCustomDataDefectDental CareDental PulpDentistryDiseaseEngineeringEuthanasiaExtracellular Matrix ProteinsFatty acid glycerol estersFemurFreezingGelGene ExpressionGoldGrowth FactorHarvestHealthHistologyHydroxyapatitesIn VitroIndividualInfectionIntravenousKneeLateralLeftLengthLimb structureMalignant NeoplasmsMechanicsMilitary PersonnelModelingMonitorNatural regenerationOperative Surgical ProceduresOrthopedicsOsteoblastsOsteocalcinOxytetracyclinePatientsPhysiologic calcificationPlastic Surgical ProceduresPopulationPorosityProcessPropertyQuality of lifeRattusReportingResearch PersonnelRiskScanningScanning Electron MicroscopyShapesSignal TransductionSiteSourceSurfaceTechniquesTemperatureTestingTimeTissuesTitaniumTraumaVascular blood supplyVeteransWeight-Bearing stateWistar RatsX-Ray Computed Tomographyadverse outcomebasebattlefield injurybiomaterial compatibilitybonebone lossbone repairbone scaffoldcell typeclinical materialcombatcomorbidityconventional therapydensitydesignefficacy testingfluorapatiteimprovedin vitro testingin vivomechanical propertiesmicroCTmilitary veteranmineralizationnovelosteogenicosteopontinoverexpressionphysical propertyprotein expressionregeneration potentialrepairedscaffoldskeletalstandard carestem cell differentiationstem cellssubstantia spongiosasuccesstissue regenerationwound
项目摘要
Segmental bone loss due to high-energy trauma, such as battlefield injuries, are limb-threatening conditions, but
there are limited treatment options available. Conventional treatments include bone grafts, vascularized bone
transplant, and allografts. Bone repair using vascularized autografts is arguably the best current approach,
because the repair process will proceed with the patient’s own tissue and blood supply, which can be harvested
at the time of surgery. This eliminates many adverse outcomes associated with allografts and bioengineered
bone substitutes. However, donor autograft sites are limited, and thus, its supply cannot meet the demand. It
also requires a second surgical site, which could result in further comorbidities. Decellularized allografts
harvested from cadaveric sources have the advantage of being osteoconductive. However, they are associated
with risk of host rejection and accelerated graft resorption. Current bioengineered grafts focus on providing the
necessary matrix to support bone regeneration by providing biocompatible, bioresorbable, and porous scaffolds
made from materials such as hydroxyapatite, collagen and synthetic materials. It is now clear that bioengineered
grafts also need a reliable source of osteogenic progenitor cells as well as osteogenic signals to be effective
bone substitutes. To improve upon these initial designs, researchers made new scaffolds that integrated
extracellular matrix proteins or growth factors, typically bone morphogenetic proteins (BMPs), but with limited
success. Often the strength of the scaffolding remains the main hurdle for weight-bearing after surgery. To this
end, we fabricated a fully interconnecting porous fluorapatite (FA) scaffold by adopting a “gel-casting” process,
and then heat-treating to optimize the mechanical strength. As these surfaces are osteogenic, they also enhance
osteoblast adhesion, proliferation, and differentiation. Interestingly, these scaffolds also possess the ability to
differentiate stem cells (adipose derive stem cells) to an osteogenic lineage without any osteogenic signals (e.g.
exogenous BMPs). More notably, the “gel-casting” technique allows custom fabrication of desired shapes and
sizes of rigid scaffoldings to fit individual defects. Thus, we hypothesize that FA scaffoldings seeded with a
patient’s own adipose tissue-derived stromal vascular fraction (SVF) stem cells will have the ability to
regenerate osseous tissue. This hypothesis will be tested in three aims. Specific Aim 1 will investigate the
mechanical, physical, and degradation properties of the porous fluorapatite scaffolds, which will be generated
by the gel-casting technique. Specific Aim 2 will quantify the in vitro adhesion and differentiation properties of
the SVF cells on porous FA surfaces. Specific Aim 3 will investigate the osteogenic potential of the FA scaffolding
with and without SVF in a rat femoral condyle model. It is expected that such combination treatment of SVF and
FA scaffolds will provide a potential source of “off-the-shelf” scaffolding materials for clinical bone repair and
regeneration and improve the health and quality of life for a number of military personnel, veterans, and civilians.
!
!
由于战场受伤等高能创伤引起的部分骨骼损失是威胁肢体的条件,但
有限的治疗选择。常规治疗包括骨移植,血管化骨
移植和同种异体移植。使用血管化自身移植的骨修复可以说是当前的最佳方法,
因为维修过程将继续患者自己的组织和血液供应,可以收获
在手术时。这消除了许多与同种异体移植和生物工程相关的不良结果
骨替代物。但是,供体自体移植站点有限,因此,其供应无法满足需求。
还需要第二个手术部位,这可能会导致进一步的合并症。脱细胞的分支
从尸体来源收获的优势是成为骨导导。但是,它们是相关的
有宿主排斥和加速移植的风险。当前的生物工程移植物专注于提供
通过提供生物相容性,可生物吸收和多孔脚手架来支持骨再生的必要基质
由氢氧化石,胶原蛋白和合成材料等材料制成。现在很明显生物工程
移植物还需要可靠的成骨祖细胞和成骨信号的可靠来源才能有效
骨替代物。为了改善这些最初的设计,研究人员制作了新的脚手架
细胞外基质蛋白或生长因子,通常是骨形态发生蛋白(BMP),但有限
成功。通常,脚手架的强度仍然是手术后体重的主要障碍。对此
最后,我们通过采用“凝胶铸造”过程,制造了完全相互连接的多孔氟磷灰石(FA)支架
然后进行热处理以优化机械强度。由于这些表面是成骨的,因此它们也增强了
成骨细胞粘附,增殖和分化。有趣的是,这些脚手架也具有
将干细胞(脂肪衍生干细胞)区分成成骨的谱系,而没有任何成骨信号(例如
外源BMP)。更值得注意的是,“凝胶铸造”技术允许自定义形成所需的形状和
刚性脚手架的尺寸适合单个缺陷。那我们假设Fa脚手架播种
患者自己的脂肪组织衍生的基质血管分数(SVF)干细胞具有能力
再生骨组织。该假设将以三个目标进行检验。特定目标1将调查
多孔氟磷灰石支架的机械,物理和降解特性,将生成
通过凝胶铸造技术。特定的目标2将量化体外粘附和分化特性
多孔FA表面上的SVF细胞。特定的目标3将研究FA脚手架的成骨潜力
在大鼠股骨模型中有和没有SVF。可以预期,这种组合治疗SVF和
FA脚手架将为临床骨修复和
再生并改善许多军事人员,退伍军人和平民的健康和生活质量。
呢
呢
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluorapatite and fluorohydroxyapatite apatite surfaces drive adipose-derived stem cells to an osteogenic lineage.
氟磷灰石和氟羟基磷灰石表面驱动脂肪干细胞形成成骨谱系。
- DOI:10.1016/j.jmbbm.2021.104950
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Jeyapalina,Sujee;Hillas,Elaine;Beck,JamesPeter;Agarwal,Jayant;Shea,Jill
- 通讯作者:Shea,Jill
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayant Prasad Agarwal其他文献
Jayant Prasad Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayant Prasad Agarwal', 18)}}的其他基金
Fluoridated scaffolds for the treatment of critical-size bone defects
用于治疗临界尺寸骨缺损的氟化支架
- 批准号:
10633345 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
- 批准号:
10015497 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
- 批准号:
10162333 - 财政年份:2020
- 资助金额:
-- - 项目类别:
A Biodegradable Vascular Coupling Device for End-to-End Anastomosis
用于端端吻合的可生物降解血管耦合装置
- 批准号:
9764480 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Intramedullary antibiotic therapy for the treatment of osteomyelitis
髓内抗生素疗法治疗骨髓炎
- 批准号:
9273890 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Fat transplant for glitazone delivery and adiponectin production to inhibit breast cancer
脂肪移植用于格列酮输送和脂联素生产以抑制乳腺癌
- 批准号:
8958679 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Efficacy of Local Tacrolimus Delivery in Allograft Nerve Transplantation
同种异体神经移植中他克莫司局部给药的疗效
- 批准号:
9137754 - 财政年份:2015
- 资助金额:
-- - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
膜仿生载基因纳米球体内重编程巨噬细胞抑制肌腱粘连的机制研究
- 批准号:82372389
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
- 批准号:
10015497 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
- 批准号:
10162333 - 财政年份:2020
- 资助金额:
-- - 项目类别:
The Role of Extracellular Environment in Adipocyte Fate
细胞外环境在脂肪细胞命运中的作用
- 批准号:
10396224 - 财政年份:2020
- 资助金额:
-- - 项目类别:
The Role of Extracellular Environment in Adipocyte Fate
细胞外环境在脂肪细胞命运中的作用
- 批准号:
10395482 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Cardiometabolic Effects of Gender-Affirming Hormonal Therapy among Transgender Women with HIV
性别肯定激素治疗对感染艾滋病毒的跨性别女性的心脏代谢影响
- 批准号:
10459338 - 财政年份:2019
- 资助金额:
-- - 项目类别: