Vascular Barrier Leakage in Inflammation
炎症中的血管屏障渗漏
基本信息
- 批准号:9892082
- 负责人:
- 金额:$ 89.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAtherosclerosisBiogenesisBloodBlood VesselsCardiovascular DiseasesCellsCytoskeletonDevelopmentDiabetes MellitusEndothelial CellsEndotheliumEventExtravasationFunctional disorderGenerationsGeneticGlycocalyxHistonesHumanImaging TechniquesIn VitroInfectionInflammationInflammatoryInjuryIntercellular JunctionsInvestigationKnowledgeLeadLeukocytesMediatingMicrocirculationMolecularMolecular BiologyNational Heart, Lung, and Blood InstituteOrganPathway interactionsPermeabilityPharmaceutical PreparationsPharmacologyPost-Translational Protein ProcessingProductionProteinsReactionReportingRoleSepsisSeriesSignal TransductionSterilityStrokeStructureSurfaceTechniquesTestingTissuesTranslatingTraumaVascular PermeabilitiesVesicleWorkanimal dataclinically relevantcomparativedesigndrug developmenteffective therapyexperimental studyextracellularhuman modelin vivoinhibitor/antagonistinnovationinsightleukocyte activationmicrovesiclesmolecular imagingneutrophilnew therapeutic targetnovelnovel diagnosticspalmitoylationpreventprogramsreceptorresponsetheoriestherapeutic targettranslational impactvascular inflammation
项目摘要
PROJECT SUMMARY/ABSTRACT
Vascular barrier dysfunction causes aberrant transport of blood components into the vessel wall or surrounding
tissues, a hallmark of inflammatory injury in response to trauma, sepsis, atherosclerosis, diabetes, and stroke.
Currently, there are no effective therapies that directly target the leaky barrier, as drug development has been
hampered by knowledge gaps and difficulties in translating cell/animal data to human pathophysiology. Our
program addresses these challenges via comparative analyses of endothelial barrier structure and function in
human and animal models of inflammatory injury. We conduct three series of studies in the blood, blood-vessel
interface and endothelial barrier structure, aimed at 1) identifying key circulating factors that cause barrier
leakage and their cell-specific mechanisms of production and action; 2) characterizing endothelial surface
receptors and intracellular signals that transduce their effects; and 3) elucidating molecular events in cell-cell
junctions, cytoskeleton, and glycocalyx that ultimately lead to barrier opening. Our work has continuously been
supported by the NHLBI contributing to the development of novel techniques and transformative theories in
vascular permeability. We were among the first to characterize the nmMLCK signaling in endothelial junction
dynamics and paracellular permeability during leukocyte activation. Recently, we reported the discovery of a
new post-translational modification pathway, dhhc21-mediated protein palmitoylation, in microvascular leakage
and leukocyte-endothelium interactions following infection and sterile injury. Built on these exciting findings, our
program continues to advance by exploring novel diagnostic/therapeutic targets with mechanistic insights that
will transform the paradigm of inflammation. Current efforts are directed to the characterization of neutrophil
extracellular traps, histones and microvesicles, focusing on their cell-specific mechanisms of generation and
function in the microcirculation. Studies are on-going to test the roles of palmitoylation in vesicle biogenesis,
cargo composition and interaction with endothelial cells. The barrier-disrupting effects of these factors will be
uncovered with in-depth molecular details on endothelial glycocalyx receptors, intracellular signal transduction,
and post-translational modification (palmitoylation) of junction structures. We use a multifaceted approach that
incorporates innovative molecular biology and imaging techniques (many developed in our lab) into functional
analyses of vascular permeability under clinically relevant conditions. Complementary in vitro, ex vivo, and in
vivo experiments are designed testing pharmacological activators and inhibitors, molecular manipulations, and
genetic/chimeric alterations at cell-tissue-body levels. A unique aspect of our program lies in the translational
impact achieved through the studies with intact functionally viable human organs.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Y Yuan其他文献
Sarah Y Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Y Yuan', 18)}}的其他基金
Training in Research on Vascular Inflammation and Injury
血管炎症和损伤研究培训
- 批准号:
10332781 - 财政年份:2022
- 资助金额:
$ 89.38万 - 项目类别:
Training in Research on Vascular Inflammation and Injury
血管炎症和损伤研究培训
- 批准号:
10531933 - 财政年份:2022
- 资助金额:
$ 89.38万 - 项目类别:
Disintegrin Metalloprotease and Endothelial Permeability
解整合素金属蛋白酶和内皮通透性
- 批准号:
8655168 - 财政年份:2011
- 资助金额:
$ 89.38万 - 项目类别:
Disintegrin Metalloprotease and Endothelial Dysfunction in Sepsis
脓毒症中的解整合素金属蛋白酶和内皮功能障碍
- 批准号:
9380597 - 财政年份:2011
- 资助金额:
$ 89.38万 - 项目类别:
Disintegrin Metalloprotease and Endothelial Permeability
解整合素金属蛋白酶和内皮通透性
- 批准号:
8402011 - 财政年份:2011
- 资助金额:
$ 89.38万 - 项目类别:
Disintegrin Metalloprotease and Endothelial Permeability
解整合素金属蛋白酶和内皮通透性
- 批准号:
8458134 - 财政年份:2011
- 资助金额:
$ 89.38万 - 项目类别:
Disintegrin Metalloprotease and Endothelial Dysfunction in Sepsis
脓毒症中的解整合素金属蛋白酶和内皮功能障碍
- 批准号:
9908099 - 财政年份:2011
- 资助金额:
$ 89.38万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 89.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists