Neuronal Circuit Maintenance in Healthy Aging
健康老龄化中的神经元回路维护
基本信息
- 批准号:9891620
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-15 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:AcetyltransferaseAction PotentialsAcuteAdultAffectAgeAgingAtrophicBindingBioinformaticsBrainCalciumCalcium SignalingCell membraneCell physiologyCellular StressCellular biologyChromatinCommunicationComplexCuesDNA DamageDNA Double Strand BreakDNA RepairDataData SetDefectDiagnosisDiseaseDouble Strand Break RepairElementsEnhancersEpidemiologyFunctional disorderGamma-H2AXGene ActivationGene ExpressionGene Expression RegulationGene TargetingGenesGenetic TranscriptionGenome StabilityGenomicsGoalsHTATIP geneHippocampus (Brain)HumanImpaired cognitionImpairmentIncidenceIndividualInhibitory SynapseInvertebratesKnockout MiceKnowledgeLearningLinkLongevityMaintenanceMapsMediatingMediator of activation proteinMemoryMolecularMusMutationNPAS4 geneNervous system structureNeurobiologyNeurodegenerative DisordersNeuronsPhasePopulationProcessPropertyRegulationRegulator GenesRepair ComplexReportingRisk FactorsRoleSignal TransductionSiteStimulusSynapsesTestingTissuesTrainingTranscription CoactivatorTranscriptional RegulationWorkage relatedaging brainaging hippocampusaging populationcell typecognitive trainingdesignexcitatory neuronexperimental studygene inductiongenomic locushealthy agingin vivoinhibitory neuronjuvenile animalneural circuitneurodegenerative dementianeuronal circuitrynovelprematurepreservationprogramspromoterprotein complexrecruitrepairedresponsesensory stimulusskillstranscription factor
项目摘要
Project Summary
The overarching goal of this study is to identify new mechanisms that preserve neuronal function with age.
As the world's aging population steadily increases, the number of diagnoses for neurodegenerative disease
and dementia is projected to more than double within the next 30 years, underscoring our immediate need to
understand the cellular and molecular basis of brain aging. Atrophy of the connections that mediate neuronal
communication leads to aberrant activity within neural circuits in the aging brain. How changes in activity
modify the properties of aging neurons is not yet clear. The brain adapts to neuronal activity in part via the
induction of new gene expression programs encoding critical cell-type-specific mediators of circuit plasticity.
Whether re-engaging the regulators of these gene programs in aging brains can ameliorate declining neuronal
function remains unknown.
The bHLH-PAS transcription factor NPAS4 constitutes a major regulator of activity-dependent gene
programs in both mice and humans. NPAS4 integrates into the NuA4/TIP60 acetyltransferase protein complex,
a transcriptional co-activator and DNA repair complex, which has been linked to learning and memory in
invertebrates. Intriguingly, activity-dependent elements targeted by NPAS4 transiently acquire a chromatin
mark of DNA damage signaling upon neuronal activation (γH2AX), raising the possibility that NPAS4 may
function at these sites to help repair damage resulting from activity-driven transcription. In preliminary data, I
discovered that Npas4 knockout mice die prematurely with signs of cell stress in the hippocampus. This study
will examine the hypothesis that the newly identified NPAS4:NuA4 complex has evolved a protective role to
promote the sustained functionality of neurons by maintaining transcriptional control and genome stability at
activity-dependent gene loci. I will examine age-dependent changes to Npas4 regulation and activity-
dependent gene induction across neuronal cell types (Aim 1, K99) and identify critical gene targets of this
complex in activated neurons (Aim 2, K99). During the R00 phase, I will expand upon these ideas to explore a
novel role for this activity-dependent protein complex in the repair of directed DNA damage at enhancers and
promoters, and will examine how this directed DNA repair activity changes with age (Aim 3, K99). In the long
term, I will leverage the datasets, and new skills in bioinformatics and neurobiology acquired during the K99
training period, to identify new mechanisms and molecules that preserve cell-type-specific function in the
nervous system. My ultimate goal is to design targeted strategies to slow or reverse decline in the neuronal
subtypes most susceptible to age-dependent diseases.
项目摘要
这项研究的首要目标是确定随着年龄的增长保持神经元功能的新机制。
随着世界老龄化人口的稳步增加,神经退行性疾病的诊断数量
预计在未来30年内,痴呆症的发病率将增加一倍以上,这强调了我们迫切需要
了解大脑老化的细胞和分子基础。介导神经元的连接萎缩
交流会导致衰老大脑中神经回路的异常活动。活动的变化
改变老化神经元的特性尚不清楚。大脑适应神经元活动的一部分是通过
诱导编码回路可塑性的关键细胞类型特异性介质的新基因表达程序。
在衰老的大脑中重新参与这些基因程序的调节是否可以改善神经元的衰退,
功能仍然未知。
bHLH-PAS转录因子NPAS 4构成了活性依赖性基因的主要调节因子,
在老鼠和人类身上的程序。NPAS 4整合到NuA 4/TIP 60乙酰转移酶蛋白复合物中,
一种转录辅激活因子和DNA修复复合物,它与学习和记忆有关,
无脊椎动物有趣的是,NPAS 4靶向的活性依赖性元件瞬时获得染色质
神经元活化后DNA损伤信号的标志(γ H2 AX),提高了NPAS 4可能
在这些位点发挥作用,以帮助修复由活性驱动的转录引起的损伤。根据初步数据,我
发现Npas 4基因敲除小鼠过早死亡,海马体中有细胞应激的迹象。本研究
将检验新鉴定的NPAS 4:NuA 4复合物已经进化出保护作用的假设,
通过维持转录控制和基因组稳定性促进神经元的持续功能,
活性依赖性基因座。我将研究Npas 4调节和活性的年龄依赖性变化-
跨神经元细胞类型的依赖性基因诱导(Aim 1,K99),并确定其关键基因靶点
激活神经元的复合物(Aim 2,K99)。在R 00阶段,我将扩展这些想法,
这种活性依赖性蛋白复合物在修复增强子处的定向DNA损伤中的新作用,
启动子,并将检查这种定向DNA修复活性如何随年龄变化(Aim 3,K99)。从长远
在本学期,我将利用K99期间获得的数据集以及生物信息学和神经生物学方面的新技能
培训期间,以确定新的机制和分子,保持细胞类型特异性功能,
神经系统我的最终目标是设计有针对性的策略来减缓或逆转神经元的衰退,
最易受年龄依赖性疾病影响的亚型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth A Pollina其他文献
Elizabeth A Pollina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth A Pollina', 18)}}的其他基金
Broad H3K4me3 Domains: A Discovery Tool for Regulators of Neural Stem Cell Aging
广泛的 H3K4me3 结构域:神经干细胞衰老调节因子的发现工具
- 批准号:
8548880 - 财政年份:2012
- 资助金额:
$ 10.5万 - 项目类别:
Broad Domains of H3K4me3: A Discovery Tool for Novel Regulators of Adult Neural S
H3K4me3 的广泛领域:成人神经元新型调节剂的发现工具
- 批准号:
8396947 - 财政年份:2012
- 资助金额:
$ 10.5万 - 项目类别:
Broad Domains of H3K4me3: A Discovery Tool for Novel Regulators of Adult Neural S
H3K4me3 的广泛领域:成人神经元新型调节器的发现工具
- 批准号:
8723727 - 财政年份:2012
- 资助金额:
$ 10.5万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 10.5万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 10.5万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




