Multi-atlas based Direct Estimation in Preclinical Alzheimer's Disease
基于多图谱的临床前阿尔茨海默病直接估计
基本信息
- 批准号:9763408
- 负责人:
- 金额:$ 8.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAnatomyAtlasesBase of the BrainBrainBrain imagingBypassClassificationClinicalClinical assessmentsCloud ComputingCognitiveCommunitiesComputer AssistedComputer-Assisted DiagnosisDataDatabasesDecision MakingDementiaDiagnosisDiagnosticDimensionsDiseaseEarly DiagnosisElderlyEnrollmentEvaluation ResearchGoalsHealthcareImageImage AnalysisImpaired cognitionIndividualInformation RetrievalJudgmentKnowledgeLeadLibrariesLongitudinal StudiesMagnetic Resonance ImagingMethodsOutcomeParticipantPatient imagingPatientsPerformancePhasePhysiciansPopulationPositioning AttributeProbabilityProcessRadiology SpecialtyReportingResearchResourcesRiskShapesStructureTechnologyTestingTimeTrainingWorkbaseclinical practiceclinically significantcloud platformcognitive testingcohortcomputational platformcomputerized toolsefficacy testingexperiencefollow-upfunctional outcomeshigh dimensionalityimage registrationimaging Segmentationimprovedindividual patientknowledge baselongitudinal designnext generationnormal agingnoveloutcome forecastpre-clinicalquantitative imagingstatisticssuccesstool
项目摘要
Project summary:
In this application, we will establish a novel paradigm of atlas-based brain MRI analysis of preclinical Alzheimer’s
disease (AD), featuring in direct estimation of the patients’ attributes with a unique knowledge-based information-
retrieval technology. MRI atlases are widely used for automated image parcellation, especially, recent advances
in multi-atlas methods have yielded superior segmentation accuracy. In conventional atlas-based analysis,
atlases are used merely as templates to segment a patient image, and then volumes, shapes, intensities are
extracted from the segmented structures to estimate the patient’s diagnostic attributes, such as cognitive status
or clinical assessments. In contrast, in the proposed multi-atlas based direct estimation (MADE) approach, we
utilize the multi-atlas library as a knowledge database that is associated with rich clinical information; anatomical
similarity between the patient and atlas images will be used to weigh the information from multiple atlases, and
a weighted decision will be made to directly estimate the patient attributes, bypassing the segmentation process.
Our preliminary data have demonstrated the advantages of MADE-based analysis of T1-weighted images in
dementia patients, compared to volumetric analysis. In addition, non-image demographic and clinical information
of the patients can be readily incorporated into the MADE framework to further enhance the estimation accuracy.
Our goals is to develop MADE-based computational tools and use them to improve diagnosis and prognosis in
preclinical phase of AD. This study will be supported by the BIOCARD cohort, which is a well-designed
longitudinal study that followed 350 participants over 20 years. Comprehensive cognitive assessments and MRI
exams have been collected in these participants since 1995 when they were cognitive normal at enrollment. This
unique database allows us to investigate brain degeneration in the long preclinical phase, and develop
computational tools that can possibly assist diagnostic decisions in this critical phase. In Aim 1, we will develop
and optimize MADE-based brain structural MRI analysis diagram to estimate the patients’ current cognitive
status and disease stages, using both the ADNI and BIOCARD data. Once the tools become mature, we deploy
them on a cloud-computing platform—the MRICloud, for public use. In Aim 2, we use the optimized MADE
pipeline to predict cognitive impairment in BIOCARD cohort. Specifically, we will used the MADE pipeline to
predict patients’ cognitive decline at 1-5 years after baseline; and also predict their probability of conversion from
normal to cognitive impairment (MCI, AD or other types of abnormality) across the 20 years of follow-up, and
estimate the time-to-diagnosis. The success of the proposed project could lead to the next generation of
knowledge-based computer-aided diagnosis, and potentially improve early diagnosis and prognosis accuracy in
preclinical AD patients.
项目概要:
在本申请中,我们将建立一种基于图谱的临床前阿尔茨海默病脑部MRI分析的新范式
疾病(AD),其特征在于直接估计患者的属性,具有独特的基于知识的信息-
检索技术MRI图谱被广泛用于自动图像分割,特别是最近的进展
在多图谱方法中已经产生了上级分割精度。在传统的基于地图集的分析中,
图谱仅用作模板来分割患者图像,然后
以估计患者的诊断属性,诸如认知状态
或临床评估。相比之下,在提出的基于多图谱的直接估计(MADE)方法中,我们
利用所述多图谱库作为与丰富的临床信息相关联的知识数据库;
患者图像和图谱图像之间的相似性将用于权衡来自多个图谱的信息,并且
将做出加权决策来直接估计患者属性,绕过分割过程。
我们的初步数据已经证明了基于MADE的T1加权图像分析的优势,
老年痴呆症患者,与体积分析相比。此外,非图像人口统计学和临床信息
的患者可以很容易地纳入MADE框架,以进一步提高估计的准确性。
我们的目标是开发基于MADE的计算工具,并使用它们来改善诊断和预后。
AD的临床前阶段。本研究将得到BIOCARD队列的支持,这是一个精心设计的
这项纵向研究跟踪了350名参与者超过20年。全面认知评估和MRI
从1995年开始收集这些参与者的测试,当时他们在入学时认知正常。这
独特的数据库使我们能够在长期的临床前阶段研究脑退化,并开发
计算工具,可能有助于诊断决策,在这个关键阶段。在目标1中,我们将开发
并优化基于MADE的脑结构MRI分析图,以估计患者当前的认知能力
状态和疾病阶段,使用ADNI和BIOCARD数据。一旦工具成熟,
他们在一个云计算平台上-MRiCloud,供公众使用。在目标2中,我们使用优化的MADE
预测BIOCARD队列中认知障碍的管道。具体来说,我们将使用MADE管道来
预测基线后1-5年患者的认知功能下降,并预测他们从
在20年随访期间,正常至认知障碍(MCI、AD或其他类型的异常),以及
估计诊断时间。拟议项目的成功可能会导致下一代
基于知识的计算机辅助诊断,并可能提高早期诊断和预后的准确性,
临床前AD患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSUMU MORI其他文献
SUSUMU MORI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSUMU MORI', 18)}}的其他基金
TRD 4: Platforms for multi-modal and multi-scale imaging data
TRD 4:多模式和多尺度成像数据平台
- 批准号:
10439906 - 财政年份:2021
- 资助金额:
$ 8.19万 - 项目类别:
TRD 4: Platforms for multi-modal and multi-scale imaging data
TRD 4:多模式和多尺度成像数据平台
- 批准号:
10270101 - 财政年份:2021
- 资助金额:
$ 8.19万 - 项目类别:
DtiStudio: Resource Software for Diffusion Tensor Imaging
DtiStudio:扩散张量成像资源软件
- 批准号:
7895613 - 财政年份:2009
- 资助金额:
$ 8.19万 - 项目类别:
DtiStudio: Resource Software for Diffusion Tensor Imaging
DtiStudio:扩散张量成像资源软件
- 批准号:
7558381 - 财政年份:2009
- 资助金额:
$ 8.19万 - 项目类别:














{{item.name}}会员




