TRD 4: Platforms for multi-modal and multi-scale imaging data

TRD 4:多模式和多尺度成像数据平台

基本信息

  • 批准号:
    10270101
  • 负责人:
  • 金额:
    $ 35.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

TRD 4: Platforms for multi-modal and multi-scale imaging data Lead Principal investigator: Susumu Mori, Professor of Radiology; Co-Principal investigators: Brian Caffo, Professor of Biostatistics; Jeremias Sulam, Assistant professor of Biomedical Engineering Co-investigators: Andreia Faria, Michael Miller, Tilak Ratnanather, Laurent Younes The role of TRD4 is to develop new technologies and platforms to integrate and analyze complex multi-modal and multi-scale imaging data via collaboration with other TRDs and CPs. In the past two decades, we have witnessed remarkable advances in image acquisition, processing, and analysis technologies for brain MRI. As we enter a new decade, however, there remain several key areas in combining information across the macro- meso-micro scales, and discovering predictive models for which we require significant advances in existing tools and technologies. One of the significant opportunities going forward is to leverage the rapidly evolving data science technologies which are now emerging and opening new frontiers for researchers. This will require advances not only in collections of software to analyze each dimension but also a new generalized framework to integrate and explore the data. Another important development in recent years is the surge of heavily data- driven approaches such as deep learning. We believe this is a great time to invest time and resources to evaluate their capability by comparing them with conventional engineering approaches. More importantly, there is great potential in combining these two approaches to test improvements in precision, accuracy, and/or efficiency. We are uniquely positioned to take a lead in this sphere by leveraging our experiences and resources (tools and data) accumulated in the past 20 years. Our specific aims will be: (1) To integrate and test deep learning (DL) approaches in image data acquisitions and analyses to solve inverse problems for estimation of latent variables in brain MRI. These variables include enhancement of SNR, anatomical resolutions, and underlying anatomical features such as axonal alignments; (2) To develop technologies and platforms for characterizing models that predict the key factors determining brain diseases by integrating multiple imaging modalities, time-domain data, and non-imaging information through statistics. Our models will focus on etiology, pathology and prognosis considering retrospective, cross-sectional and prospective data; (3) To integrate DL approaches to brain mapping strategies such as registration, image segmentation, and lesion detections. Using our rich resources for annotated image libraries (atlases), conventional segmentation / detection tools, and expertise, we will develop DL-based approaches and evaluate their efficacy, including comparison with conventional approaches in terms of accuracy and efficiency. Improvement of the performance by combining these two approaches will be tested. Furthermore, we will develop a framework for diffeomorphic image registration that can incorporate extracted features (i.e. labels and lesions) to perform brain mapping of cases with severe pathological conditions.
TRD 4:多模式和多尺度成像数据平台 主要研究者:Susumu Mori,放射学教授;共同主要研究者:Brian Caffo, 生物统计学教授;生物医学工程助理教授杰里米苏拉姆 共同研究者:Andreia Faria、Michael米勒、Tilak Ratnanather、Laurent Younes TRD 4的作用是开发新的技术和平台,以集成和分析复杂的多模态 以及通过与其他TRD和CP协作获得多尺度成像数据。在过去的二十年里, 在脑MRI的图像采集、处理和分析技术方面取得了显著进展。作为 然而,我们进入了一个新的十年,在综合宏观信息方面仍有几个关键领域, 中微观尺度,并发现预测模型,我们需要在现有的 工具和技术。未来的重大机遇之一是利用快速发展的 数据科学技术正在兴起,为研究人员开辟了新的领域。这将需要 进步不仅在软件集合来分析每个维度,但也是一个新的广义框架 来整合和探索数据。近年来的另一个重要发展是大量数据的激增- 例如深度学习。我们认为,这是一个很好的时间投入时间和资源, 通过将其与传统工程方法进行比较来评估其能力。更重要的是 结合这两种方法来测试精度、准确度和/或 效率我们处于独特的地位,通过利用我们的经验, 过去20年积累的资源(工具和数据)。我们的具体目标是:(1)整合和测试 图像数据采集和分析中的深度学习(DL)方法,以解决 脑MRI中潜在变量的估计。这些变量包括SNR的增强、解剖结构 分辨率和基本解剖特征,如轴突排列;(2)开发技术和 用于表征模型的平台,这些模型通过整合 多种成像模态、时域数据和通过统计的非成像信息。我们的模特将 关注病因、病理和预后,考虑回顾性、横断面和前瞻性数据;(3) 将DL方法集成到脑映射策略中,如配准,图像分割和病变 侦查利用我们丰富的带注释图像库(地图集)资源, 检测工具和专业知识,我们将开发基于DL的方法并评估其有效性,包括 在精度和效率方面与传统方法进行比较。改善 将测试结合这两种方法的性能。此外,我们将制定一个框架, 可以合并提取的特征(即标签和病变)以执行的同构图像配准 严重病理情况下的脑地形图。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUSUMU MORI其他文献

SUSUMU MORI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUSUMU MORI', 18)}}的其他基金

TRD 4: Platforms for multi-modal and multi-scale imaging data
TRD 4:多模式和多尺度成像数据平台
  • 批准号:
    10439906
  • 财政年份:
    2021
  • 资助金额:
    $ 35.27万
  • 项目类别:
Multi-atlas based Direct Estimation in Preclinical Alzheimer's Disease
基于多图谱的临床前阿尔茨海默病直接估计
  • 批准号:
    9763408
  • 财政年份:
    2018
  • 资助金额:
    $ 35.27万
  • 项目类别:
Multi-Scale Electronic Human Brain Atlas
多尺度电子人脑图谱
  • 批准号:
    8817343
  • 财政年份:
    2014
  • 资助金额:
    $ 35.27万
  • 项目类别:
Multi-Scale Electronic Human Brain Atlas
多尺度电子人脑图谱
  • 批准号:
    9319827
  • 财政年份:
    2014
  • 资助金额:
    $ 35.27万
  • 项目类别:
Multi-Scale Electronic Human Brain Atlas
多尺度电子人脑图谱
  • 批准号:
    8931065
  • 财政年份:
    2014
  • 资助金额:
    $ 35.27万
  • 项目类别:
Multi-Scale Electronic Human Brain Atlas
多尺度电子人脑图谱
  • 批准号:
    9532302
  • 财政年份:
    2014
  • 资助金额:
    $ 35.27万
  • 项目类别:
Multi-Scale Electronic Human Brain Atlas
多尺度电子人脑图谱
  • 批准号:
    9112024
  • 财政年份:
    2014
  • 资助金额:
    $ 35.27万
  • 项目类别:
MAMMALIAN CONNECTIVITY
哺乳动物的连通性
  • 批准号:
    8363505
  • 财政年份:
    2011
  • 资助金额:
    $ 35.27万
  • 项目类别:
DtiStudio: Resource Software for Diffusion Tensor Imaging
DtiStudio:扩散张量成像资源软件
  • 批准号:
    7895613
  • 财政年份:
    2009
  • 资助金额:
    $ 35.27万
  • 项目类别:
DtiStudio: Resource Software for Diffusion Tensor Imaging
DtiStudio:扩散张量成像资源软件
  • 批准号:
    7558381
  • 财政年份:
    2009
  • 资助金额:
    $ 35.27万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.27万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.27万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 35.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 35.27万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 35.27万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.27万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 35.27万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 35.27万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 35.27万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 35.27万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了