Use of a machine learning framework to predict severe maternal morbidity
使用机器学习框架来预测严重的孕产妇发病率
基本信息
- 批准号:9767258
- 负责人:
- 金额:$ 8.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-20 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAdmission activityAlcohol or Other Drugs useAlgorithmsAmbulatory Surgical ProceduresAmerican Hospital AssociationApplications GrantsAreaArea Under CurveBehaviorBlood TransfusionCaringCenters for Disease Control and Prevention (U.S.)Cessation of lifeCodeCritical IllnessDataDatabasesDiscipline of obstetricsEventFamilyGoalsHealthHealth Care CostsHealth systemHospitalizationHospitalsHumanIndividualInpatientsIntensive Care UnitsInterventionLinkLogit ModelsMachine LearningMarylandMeasuresMedicalModelingMorbidity - disease rateNeonatal MortalityNewborn InfantObesityOutcomeOutcome MeasurePathway interactionsPatientsPerformancePilot ProjectsPregnancy ComplicationsPregnant WomenPremature BirthReceiver Operating CharacteristicsRecording of previous eventsRiskRisk FactorsSamplingSensitivity and SpecificitySpecificityStatistical MethodsSurveysTechniquesTestingTimeUnited StatesUnited States Agency for Healthcare Research and QualityVisitWomanadverse pregnancy outcomeanalytical methodanalytical toolcare delivery sitecare seekingclinical caredelivery complicationsethnic diversityexperiencehealth care service utilizationhealth disparityinnovationinsightmaternal morbidityneonatal morbidityneonatal outcomepopulation basedpredictive modelingpreventracial and ethnicregression treesstillbirthsuccess
项目摘要
Severe maternal morbidity (SMM) is on the rise in the United States. Such morbidity is
accompanied by delivery complications and adverse pregnancy outcomes, and can have long-
term health consequences for women. To date, only a handful of studies examined risk factors
for SMM in the United States, and even fewer considered the site of delivery care as potentially
influencing SMM occurrence. This study will test the use of machine learning techniques to
develop models for predicting women’s risk of experiencing SMM. We will use population-based
data from a family of Maryland state databases linked with American Hospital Association
Annual Survey data for the 2010-2014 period. Our primary analytic sample will be comprised of
all delivery hospitalizations in Maryland hospitals during 2010-2014. Two SMM outcome
measures will be employed: Centers for Disease Control and Prevention (CDC)’s SMM
algorithm, and a composite measure that includes any of the codes in the CDC SMM algorithm,
ICU admission and/or blood transfusion during the delivery hospitalization. Separately for each
of the two outcome measures, we will first develop multi-stage least absolute shrinkage and
selection operator (LASSO) models to predict SMM and then employ Multiple Additive
Regression Tree to maximize the predictive ability of the LASSO models. Next, we will fit Logit
regression models for SMM adjusting for LASSO-selected predictor variables and compare
LASSO and Logit models’ performance using standard metrics such as sensitivity, specificity,
area under the curve of receiver operator characteristic. The proposal has several areas of
innovation. Classical analytics tools are not well suited to capture the full value of large data. In
contrast, machine learning techniques are unconstrained by preset statistical assumptions and
expected to make predictions with higher degrees of accuracy. The success of this pilot study
will open up new avenues of study into the potential for machine learning to aid clinical care.
Obstetrics is one of the areas that can greatly benefit from its use by predicting maternal risks
early and optimizing pathways to the best possible outcomes for women and their newborns.
Identifying key predictors of SMM can serve to ascertain health disparities, strengths and
weaknesses in obstetric care, and prevent adverse maternal and neonatal outcomes.
严重孕产妇死亡率(SMM)在美国呈上升趋势。这种发病率是
伴随着分娩并发症和不良妊娠结局,并可能有长期的-
长期对女性健康的影响。到目前为止,只有少数研究检查了风险因素,
对于SMM在美国,甚至更少的人认为交付护理的网站可能
影响SMM的发生。这项研究将测试机器学习技术的使用,
开发预测女性罹患SMM风险的模型。我们将使用基于人口的
数据来自与美国医院协会链接的马里兰州数据库的一个家庭
2010-2014年年度调查数据。我们的主要分析样本将包括
2010-2014年期间马里兰州医院的所有分娩住院。两个SMM结果
将采取措施:疾病控制和预防中心(CDC)的SMM
算法,以及包括CDC SMM算法中的任何代码的复合度量,
在分娩住院期间入住ICU和/或输血。分别为每个
在两个结果测量中,我们将首先开发多阶段最小绝对收缩,
选择算子(LASSO)模型来预测SMM,然后采用多重加性
回归树最大化LASSO模型的预测能力。接下来,我们将拟合Logit
SMM回归模型调整LASSO选择的预测变量,并比较
LASSO和Logit模型的性能使用标准指标,如灵敏度,特异性,
受试者操作者特征曲线下的面积。该提案有几个方面,
创新传统的分析工具并不适合捕捉大数据的全部价值。在
相比之下,机器学习技术不受预设统计假设的约束,
期望做出更高准确度的预测。这项试点研究的成功
这将为研究机器学习帮助临床护理的潜力开辟新的途径。
产科是可以通过预测产妇风险而从其使用中受益匪浅的领域之一
早期和优化途径,为妇女及其新生儿带来最佳结果。
确定SMM的关键预测因素有助于确定健康差异、优势和
这将有助于消除产科护理中的薄弱环节,并防止对孕产妇和新生儿产生不良后果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreea Alina Creanga其他文献
Andreea Alina Creanga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreea Alina Creanga', 18)}}的其他基金
Developing a refined comorbidity index for use in obstetric patients
开发用于产科患者的精细合并症指数
- 批准号:
10719480 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Maternal Health Data Innovation and Coordination Hub
孕产妇健康数据创新与协调中心
- 批准号:
10748737 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Cardiovascular Disease in Pregnancy and the Postpartum Period in Maryland
马里兰州妊娠期和产后期的心血管疾病
- 批准号:
10368078 - 财政年份:2021
- 资助金额:
$ 8.19万 - 项目类别:
Cardiovascular Disease in Pregnancy and the Postpartum Period in Maryland
马里兰州妊娠期和产后期的心血管疾病
- 批准号:
10195079 - 财政年份:2021
- 资助金额:
$ 8.19万 - 项目类别: