Developing a refined comorbidity index for use in obstetric patients
开发用于产科患者的精细合并症指数
基本信息
- 批准号:10719480
- 负责人:
- 金额:$ 57.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdmission activityAffectAlgorithmsAmerican College of Obstetricians and GynecologistsAreaArea Under CurveBirthCalibrationCaringCenters for Disease Control and Prevention (U.S.)CertificationCharacteristicsClinicalCommunitiesCountryDataData AnalysesData SourcesDiagnosisDiscipline of obstetricsDiscriminationEffectivenessElectronic Health RecordEvaluationEventGoalsGuidelinesHealth Care CostsHealth systemHospitalsIndividualInpatientsIntensive Care UnitsInternational Classification of Disease CodesInvestmentsMachine LearningMarylandMaternal HealthMaternal Health ServicesMaternal MortalityMaternal-fetal medicineMeasuresMedicalMonitorOutcomeOutcome MeasurePatientsPeer ReviewPerformancePerinatal CarePregnancyProcessProfessional OrganizationsPrognosisProgram EvaluationPropertyPsychometricsPublishingReceiver Operating CharacteristicsRecommendationReportingResearchResourcesReview LiteratureRiskRisk AdjustmentSamplingSocietiesStructureSystemTechniquesTestingTimeTransfusionTriageUnited StatesWorkblood productclinical practicecomorbiditycomorbidity Indexdata standardshealth care deliveryhealth datahigh riskimprovedindexinginnovationmeetingspatient populationpatient safetypredictive modelingsevere maternal morbiditysociodemographic grouptrendvirtual
项目摘要
Project Summary
Addressing the rising trends in maternal mortality and severe maternal morbidity (SMM) is a critical priority in
the United States. About half of adverse maternal health outcomes were found to be attributable to preventable
harm or unintended consequences arising from clinical practice and the system of delivering perinatal care.
Significant resources are currently being invested to implement quality improvement (QI) initiatives in birthing
hospitals across the country. There is great need to evaluate these efforts and demonstrate their effectiveness
to reducing the burden of preventable SMM and maternal deaths. Virtually all QI initiatives in birthing hospitals
use SMM as an outcome measure, but their evaluation is hindered by the need to risk-adjust SMM rates to
control for differences in patient composition within and between hospitals. To date, 3 different research groups
proposed obstetric comorbidity indices, yet all have significant limitations. The overarching goal of this study is
to develop and validate a refined comorbidity index for obstetric patients that allows SMM rate comparisons
across hospitals and adequate monitoring of QI initiatives in obstetrics. We will use Maryland’s unique, gold-
standard, hospital-based, state-representative SMM Surveillance and Review data to identify a comprehensive
list of comorbidities in patients with SMM events. Using electronic health record data from the Johns Hopkins
Health System, we will employ variable importance estimation with machine learning techniques to develop the
comorbidity index. Subsequently, we will ascertain its accuracy using receiver operating characteristic
(ROC)/precision-recall (PR) curves and areas under the curve (AUC) for outcome discrimination and lowess-
smoothed calibration plots. Also, we will compare the performance of the refined comorbidity index to predict
SMM against that of previously published comorbidity indices. To further validate our refined comorbidity index
and assesses its performance consistency across various sociodemographic groups, we will use national
hospital discharge data from the Healthcare Cost and Utilization Project’s National Inpatient Sample. A
Technical Advisory Group comprised of clinicians, community partners, patient safety experts, and certified
medical coders will meet quarterly for data interpretation sessions. At the end of the study, we expect to have a
refined comorbidity index developed in gold-standard data, with superior psychometric properties than the
previously published comorbidity indices and validated in both EHR and national hospital discharge data. Our
results will be disseminated in the peer-reviewed literature and through presentations at scientific meetings.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreea Alina Creanga其他文献
Andreea Alina Creanga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreea Alina Creanga', 18)}}的其他基金
Maternal Health Data Innovation and Coordination Hub
孕产妇健康数据创新与协调中心
- 批准号:
10748737 - 财政年份:2023
- 资助金额:
$ 57.04万 - 项目类别:
Cardiovascular Disease in Pregnancy and the Postpartum Period in Maryland
马里兰州妊娠期和产后期的心血管疾病
- 批准号:
10368078 - 财政年份:2021
- 资助金额:
$ 57.04万 - 项目类别:
Cardiovascular Disease in Pregnancy and the Postpartum Period in Maryland
马里兰州妊娠期和产后期的心血管疾病
- 批准号:
10195079 - 财政年份:2021
- 资助金额:
$ 57.04万 - 项目类别:
Use of a machine learning framework to predict severe maternal morbidity
使用机器学习框架来预测严重的孕产妇发病率
- 批准号:
9767258 - 财政年份:2018
- 资助金额:
$ 57.04万 - 项目类别:














{{item.name}}会员




